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Abstract

A new eigenfilter-based novelty detection approach to find abnormalities
in random textures is presented. The proposed algorithm reconstructs a given
texture twice using a subset of its own eigenfilter bank and a subset of a refer-
ence (template) eigenfilter bank, and measures the reconstruction error as the
level of novelty. We then present an improved reconstruction generated by
structurally matched eigenfilters through rotation, negation, and mirroring.
We apply the method to the detection of defects in textured ceramic tiles.
The method is over 90% accurate, and is fast and amenable to implementa-
tion on a production line.

1 Introduction

Surface inspection and quality classification of tiles is an essential stage in the tile man-
ufacturing industry. Due to the high cost of human inspection, speed of production line
and repetitious nature of the activity, development of an automatic inspection and de-
fect detection system would have an impressive impact on the overall performance of a
tile production plant. Typically, defects (e.g. a crack, a colour drop or a random pattern
density change) affect the expected texture of the tile and hence can signify a ’textural
abnormality’. Figure 1 shows normal and defective tiles for two different patterns. We
are particularly interested in randomly textured tiles where defects are more difficult to
discern.

One major advantage in applications such as tile manufacturing is that one always has
significant constraints, e.g. during a production run, one will always see one type of tile,
albeit with random textures. Hence, a training stage can concentrate on one particular tile
type rather than several different ones. However, the goal would still be for the reuse of
the developed algorithms for application to different tile patterns at training and testing
stages.

A typical approach to defect classification comprises feature extraction from normal
and abnormal samples, then training a classifier, and subsequently applying the trained
classifier to classify unknown samples [8]. By employing subtle pre and post process-
ing steps, efficient features, and powerful classifiers, we can expect good classification
performance. However, this well-established approach can suffer from practical draw-
backs. Firstly, in real cases the number of abnormal training samples is usually much
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lower than the number of normals. Secondly, defects are diverse and unpredictable, so
even a large set of negative samples may not necessarily cover all the possible forms
of defects. In other words, in a given N-dimensional feature space, whereas the normal
samples build well-separated clusters, we may see many ill-defined scattered regions of
abnormal samples. However, the abnormal samples should show a common characteris-
tic: a considerable distance to normal clusters. This distance is the basis of a different
approach to normal-abnormal sample classification called novelty detection or concept
learning [5, 13].

Figure 1: Normal and abnormal tile samples from two different tile types.

In this paper we report a new eigenfilter based novelty detection scheme to classify
abnormal textured tiles. The method is based on the double reconstruction of the test im-
age, once by a subset of its own eigenfilter bank and once by a subset of the template tile’s
eigenfilter bank, and measuring the reconstruction error as the level of novelty. Eigenfil-
ters are an orthogonal set, therefore any reconstruction using a complete set would be
error free and result in the original image. Hence, we examine (a) how to determine a
relevant subset of them only for the reconstruction stages and (b) how to determine the
optimum threshold on the reconstruction error to label a tile defective or not. An im-
proved method which rearranges the eigenfilters by rotation, negation, and mirroring is
then developed for better matching between the test and template eigenfilter sets. We start
with reviewing some relevant background work and outlining our experimental data set
in Section 2. Then the proposed method and the results of the first series of experiments
are detailed in Section 3. The improved structure-based eigenfilter matching method is
discussed in section 4. The paper is concluded in Section 5.

2 Background

Texture analysis techniques such as co-occurrence matrices or frequency domain-based
methods can be computationally expensive for the demands of a real-time defect inspec-
tion system, but nevertheless they have been exploited in many studies as highly accurate
techniques. One pioneering work was by Kruger et al. [7] on the diagnosis of coal work-
ers’ Pneumoconiosis using texture features extracted via both co-occurrence matrices and
Fourier domain analysis. In [12], a vision system was developed for fabric inspection,
exploiting multi-scale Wavelet representation to obtain basis images. Bernoulli’s rule of
combination was then used to recompose the images to highlight the edges and defective
regions. In [3], Boukouvalas et al. used optimal filters to detect abnormal lines and spots
in tiles. They also used the Wigner distribution to combine the advantages of both spatial
and spatial frequency domains to detect cracks. Furthermore in [6], the authors presented
a method for detecting random texture tile defects consisting of K-means clustering, fol-
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lowed by perceptual merging of clusters in Luv space and morphological analysis. This
was computationally expensive although a promising approach.

Karhunen-Loeve transform (KLT) and eigenfiltering are popular in texture classifica-
tion and defect detection works, for example [2, 14, 9]. Unser [14] tested different local
linear transforms such as KLT, discrete cosine, sine and Hadamard transforms (DCT,
DST, and DHT respectively) for texture classification and found KLT as the best algo-
rithm. Also Ade et al. [2] compared Laws filters, KLT, DCT and DHT for textile defect
detection. In their experiments, the KLT performance, particularly on larger window
sizes, was amongst the best. In [9], Kumar and Pang developed an eigenfilter-based op-
timal filtering scheme for texture defect detection yielding promising results for fabric
defect detection. They employed linear FIR filters with optimised energy separation for
both supervised and unsupervised defect detection. For optimisations, they focused on
selection of eigenvectors based on a new maximisation function and the selection of the
filter size.

It is common in novelty detection studies to apply auto-associative neural networks
(e.g. Worden [16] for cracked beam defect detection) or self organising maps (e.g. Iivari-
nen et al. for web surface inspection [4]). However, both schemes are rather structurally
complicated and need a subtle training stage as well. Here we avoid any network-type
structure or a complex training phase and only have a brief training stage to determine
optimum values for two parameters for our proposed method.

Our data set contains over 1500 tiles of eight diverse types of textures. Each tile is
represented as 256× 256 pixels at a resolution of 4 pixels/mm. Samples of each type
were divided into four non-overlapping categories of abnormal, normal, template (or ref-
erence) and parameter estimation (or training). The number of samples in the normal
and abnormal categories was kept equal and all the remaining good samples were used
to build the template and the training sets. Typically for each tile type in this study, the
template set contained a few hundred and the training set contained a few tens of images.

3 Proposed Method

Consider the process of breaking an image G into its constituent eigenimages which can
also be used to reconstruct the image. Using sliding windows, neighbourhoodN patches
of size n× n in G are extracted and rearranged as different observations of data into a
k×n2 matrix, where k is the number of patches. The patch size is typically in the range of
N =3×3, 5×5 and 7×7. The covariance matrixC, is then computed and the eigenvectors
and eigenvalues are obtained:

C(x) = E[(x− x̄)(x− x̄)T ] (1)

(C(x)−λxI)e = 0 (2)

where x̄ is the mean value, I is the unit matrix, λ is the eigenvalue and e is the eigenvector
matrix. A n× n rearrangement of the eigenvectors could be interpreted as a bank of
adapted filters of the same size, which optimally cover all n×n relations of the test image
pixels. Then basis images are obtained by 2D spatial domain convolution of the test image
by the members of the eigenfilter bank:

DG
i = G⊗Fi , i = {1, ...,N } (3)
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where Fi and Di are the ith eigenfilter and basis image from a list of n2 basis images of
each input [1, 11]. Fig. 2 shows a tile, its 3× 3 eigenfilter bank, and basis images. The
filters’ orthogonality is of importance as it builds up uncorrelated basis images ordered
by their role as constituents of the original image. These together subtly describe and can
reconstruct the image.

(a) (b) (c)

Figure 2: (a) Original tile, (b) its 3×3 eigenfilter set, (c) detailed/basis images.

Initially, we compute and store the eigenfilters of all the reference images in our tem-
plate set T . Then, the eigenfilters of an unseen tile image G are computed (e.g. see Fig.
2(b)). We search the eigenfilters of the template set to find the image M with the most
similar set of eigenfilters to G. For the search, the widely applied (e.g. in [15]) χ 2 distance
function is used. Given A and B as any two eigenfilters that are to be compared, then:

χ2(A,B) =
N

∑
i=1

(Ai−Bi)
2

|Ai|+ |Bi| (4)

Next, the test image G is reconstructed twice, once by a subset of its own eigen-
filters (RG), and once again by a subset of the matched template M’s eigenfilters (R M).
The number of filters in the subset is naturally important and is dealt with in Section
3.2. Reconstruction could be carried out by simple addition of the filter responses or by
Bernoulli’s rule of combination [12]. In our experiments, Bernoulli’s rule did not show
any advantage to simple addition, hence subsequently only addition-based reconstruction
was used:

RG = ∑i D
G
i and RM = ∑i D

M
i i = {1, ..,N } (5)

An error between the reconstructed pair larger than a given threshold ϒ is then considered
as an indication of abnormality of test image G:

(∆E = |RG−RM|) > ϒ −→ DEFECT (6)

The second column in Table 1, shows the best classification accuracy (CA) for three
different neighbourhood sizes, N =3× 3, 5× 5 and 7× 7 for this reconstruction. The
computation for N =3× 3 took 0.501s on a 700 MHz PC in Matlab. At the expense of
slightly more elaborate computation, instead of the eigenfilters, we can search for the
best matching filter responses, i.e. basis images, before reconstructing the images. The
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χ2 search distance comparison then becomes:

χ2(DG,DM) =
N

∑
i=1

(DG
i −DM

i )2

|DG
i |+ |DM

i |
(7)

Eigenfilters Using Basis No. of
N Only CA Images CA Filters

3×3 81.12% 85.32% 6
5×5 77.62% 81.25 % 12
7×7 74.22% 79.90% 32

Table 1: Classification performance for the MBE approach

This significantly increases accuracy, as shown in the third column of Table 1, at a
very marginal increase in computation time to 0.538s. The number of filters used in the
reconstruction stage in each case are shown in the final column. We refer to this method
as Matching by Eigenfilters or MBE.

If we were to ignore the reconstruction stage and detect the defects by only examining
the distance amongst the eigenfilter sets for the test image and the template, a reduced
accuracy of only 72.41% would be achieved. This vindicates the use of reconstructed
images to perform the classification. However, the best result is still not satisfactory. After
dealing with the ϒ parameter and the best number of filters in the next two subsections,
we show how the results can be improved through the restructuring of eigenfilter subsets
in reconstructing G.

3.1 Finding optimum ϒ
The choice of ϒ is determined through a simple training or parameter estimation stage
depending on the type of tile texture. Initially, we apply the proposed algorithm on the
training set P (which contains only ’good’ samples) and obtain the reconstruction errors.
Then the mean (µP) and the standard deviation (σP) of the reconstruction errors are com-
puted. The optimum threshold ϒ is assumed to be an α weighted deviation from the
mean:

ϒ = µP +ασP (8)

Thus, any unseen tiles with reconstruction error ∆E > ϒ will be considered as abnormal.
Furthermore, we continue the parameter estimation stage to determine the optimum value
for α using k-fold cross validation. Here a 4-fold cross validation was employed, where
75% of samples were used for parameter estimation, and 25% for testing the performance.
The result is taken as the average of four iterations of that procedure on non-overlapped
subsets.

As an example, Fig. 3 depicts the distributions of ∆E for normal, abnormal and tem-
plate sets of a specific type of tile. In this case, the template’s ∆E statistics are µP = 0.24,
and σP = 0.11 (Fig. 3(top)). The test data reconstruction errors are plotted in Fig.
3(bottom). The cross validation algorithm estimates the optimum separation parameter
set as ϒ = 0.36, from α = 1.12, on the normalised ∆E axis. The subsequent correct
classification rate for this example was 95.0%.
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Figure 3: Reconstruction error (∆E) distribution for (top) training set P, (bottom) normal
and abnormal test samples. The training set parameters (µP,σP) are used in computing
the optimum threshold for the test samples. The ∆E axis has been normalised to lie in the
range [0-1].

Next we describe how the near-optimal number of eigenfilters are selected to recon-
struct an image, whether for routine comparison of unseen tiles against the template set T
or to determine the optimum value of ϒ as just described.

3.2 The Subset of Eigenfilters

Choosing the proper subset of eigenfilters is fundamental to obtaining the most accurate
classification results. Randomly selecting a number of the eigenvectors corresponding
to the highest eigenvalues does not necessarily capture the defective area characteristics
since such areas are relatively small in the image. We obtained an average of only 72.92%
accuracy using this approach.
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For the experimental results reported in Table 1 we measured the χ 2 distance between
corresponding eigenfilters of the test image G and the template image M and then used the
measures to reorder the eigenfilter pairs into a list, from minimum distance to maximum.
We then assumed pairs at the maximum distance end of the list are novelty indicators
that convey the differences, i.e. abnormality information, whereas pairs at the minimum
distance end of the list convey the similarities. To determine how many pairs in the list
should be used we exhaustively tried all possible values from {2, ...,N−1} in the training
stage to determine the optimum number. This was then used throughout the testing stage.
In all the tile types, we found the optimum value was around N /2, so the search for the
optimum when testing a new tile type can be limited to the vicinity of that number for the
given neighbourhood size.

In summary, the eigenfilter based approach proposed so far manages a respectable
classification accuracy of 85.32% with parameters that can be easily determined through
a simple training stage for the tile texture under production. Next, we introduce an im-
provement to increase this accuracy.

4 Improvement through matching by structure

When we examine the 3× 3 eigenfilter sets for two sample images, as shown in Fig. 4,
it becomes apparent that some corresponding filters may be negations and/or rotations of
each other (for example see pairs 2, 3 and 9), meaning that the computed overall distance
between two textures would not be reliable. In fact, even a simple rotation of the same
tile will result in rotated eigenfilters and disrupt the distance measurements. The figure
also demonstrates that finding similarities or relationships amongst larger 5× 5 filters
is much more involved than smaller 3× 3 ones, mainly due to the considerably higher
diversity of 5× 5 matrices. Therefore the MBE scheme would be even less effective
for larger neighbourhood sizes. Non-smooth surfaces of many tiles and slanted lighting
of the image grabber system, (which is essential for visibility of some sorts of defects),
amplify the effects of rotation on the texture. Varma and Zisserman have considered this
phenomenon as a 3D effect on textures [15].

We therefore develop a more effective and rotation-invariant scheme by matching
the filters’ structure. This will allow all filters of a template image M to compete as
the possible corresponding ith filter of the test image G, regardless of their associated
eigenvalues. Hence, the minimum distance δ between two specific filters is computed as:

δAi,Bj = min( χ2(Ai,Bj) , χ2(Ai,B
−→←−
j ) , χ2(Ai,B

↑↓
j ) , χ2(Ai,Bj) , χ2(Ai,B

θ
j ) ) (9)

where χ2(Ai,B∗j) =
(Ai−B∗j)

2

|Ai|+|B∗j | , θ = {90◦,180◦,270◦}, (
−→←−· ) and (· ↑↓) are vertically and

horizontally mirrored (i.e. ’flipped’) matrices, (·) is the complement (i.e. ’negative’) of
the matrix, and Mθ

j indicates the θ degrees rotated version of the input. Mirroring is
implemented by swapping the columns or rows of M. Complementing is performed by
using the mean value of the filter µX as the origin:

X =−(X−µX)+µX (10)
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Figure 4: (top) Two original tiles, (middle) their 3× 3 filter banks, (bottom) their 5× 5
filter banks.

We refer to this improved approach as matching by structure or MBS. The number
of filters in the subset used for computing the reconstructed image is then worked out
as before (see Section 3.2). Table 2 presents the performance of the MBS method, in-
cluding accuracy, sensitivity (SNS), and specificity (SPC), averaged across our data set,
showing a slight improvement over MBE for the smaller neighbourhood size ofN =3×3,
and considerable improvements for larger sizes N =5× 5, 7× 7, and 9× 9 with the best
result at 91.46% overall accuracy for N =7×7 (cf. Table 1). This seems reasonable as a
3×3 neighbourhood may be less likely to capture the characteristics of the texture than a
slightly larger one. Unfortunately however, the combined demands of the increased num-
ber of χ2 comparisons and the larger neighbourhoods result in an exponential increase
in computation time: 0.740s, 2.55s, 11.4s, and 69.2s respectively for the four N s tested.
The table also shows the average number of filters used in the reconstruction stages.
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Table 3 presents the detailed results of the MBS method for differentN for all our tile
types. Except for case S1, both N =5× 5 and 7× 7 always achieve better classification
accuracy than N =3× 3. By the time we get to a 9× 9 neighbourhood, a decline in the
accuracy can be observed, thus showing N =7× 7 as the optimal window on average.
However, the N =5× 5 case achieves a very close average to the N =7× 7 case, while
also getting better individual accuracies for L1 and S1 tile textures, all at much lower
computational cost. Perhaps optimising N for a given type in the training stage could
improve the overall classification performance even more.

Neighbourhood CA% SNS SPC No. Filters
Size Involved

3×3 86.71 0.898 0.835 5
5×5 91.19 0.969 0.853 14
7×7 91.46 0.972 0.855 26
9×9 90.74 0.966 0.850 43

Table 2: Classification performance using matched-by-structure filters

N =3×3 N =5×5 N =7×7 N =9×9
Type CA% SNS SPC CA% SNS SPC CA% SNS SPC CA% SNS SPC

A1 82.45 0.852 0.797 83.72 0.874 0.800 87.54 0.875 0.875 84.56 0.832 0.859
A2 76.29 0.850 0.675 87.24 0.919 0.825 89.84 0.965 0.831 87.33 0.943 0.804
D1 100 1 1 100 1 1 100 1 1 99.81 0.998 0.998
D2 79.29 0.792 0.792 100 1 1 100 1 1 99.81 0.999 0.998
K1 88.00 0.899 0.861 93.55 0.978 0.893 97.81 1 0.956 94.27 0.998 0.887
L1 85.29 0.934 0.771 86.76 1 0.735 81.72 1 0.624 81.97 0.976 0.712
S1 92.22 0.922 0.922 85.34 1 0.706 80.80 0.969 0.646 85.30 0.983 0.682
S2 90.15 0.935 0.868 92.89 0.988 0.869 93.98 0.968 0.910 92.88 0.998 0.859

µ 86.71 0.898 0.835 91.19 0.969 0.853 91.46 0.972 0.855 90.74 0.966 0.850
σ2 0.006 0.004 0.010 0.004 0.002 0.012 0.006 0.002 0.022 0.004 0.003 0.013

Table 3: Classification accuracy of different tile types for different neighbourhood sizes
N using MBS. µ and σ2 are mean and variance.

The results presented in Table 3 can be improved upon by resorting to a standard train-
ing and testing classification paradigm. We applied a backpropagation neural network
(BPNN) classifier trained on Gabor filter features and obtained an average accuracy of
96.57%. However, unlike the proposed novelty detection scheme, this approach required
hours of training for each tile type making it less practical for realistic implementation. It
also can suffer from having to deal with previously unseen defects as described in Section
1. For more comparative results and analysis, the reader is referred to [10].

5 Conclusion

We introduced a method of novelty detection for tile inspection based on eigenfilter anal-
ysis. Initially the MBE approach was outlined consisting of the reconstruction of a given
texture twice using a subset of its own eigenfilter bank and a subset of a reference (tem-
plate) eigenfilter bank. A measure of the reconstruction error indicated the existence of
defects. We then presented the MBS scheme comprising an improved reconstruction gen-
erated by structurally matched eigenfilters through rotation, negation, and mirroring. This
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made eigenfilter comparison more resilient and meaningful in terms of matching a tem-
plate’s eigenfilter against an unseen tile’s. Results were presented for a large selection of
tile textures.

Like other novelty detection schemes, the most important advantage of the proposed
method is its relatively low dependence on negative samples. The MBS approach is ro-
tationally invariant and capable of more accurate normal/abnormal classification. The
method has full potential for real-time implementation and we plan to exploit this by
further code optimisation.
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