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Abstract 

We propose a new kernel direct discriminant analysis (KDDA) algorithm in this paper. First, a recently 

advocated direct linear discriminant analysis (DLDA) algorithm is overviewed. Then the new KDDA 

algorithm is developed which can be considered as a kernel version of the DLDA algorithm. The 

design of the minimum distance classifier in the new kernel subspace is then discussed. The results of 

experiments on two well-known facial databases show the effectiveness of the proposed method in face 

recognition. The results of experiments also confirm that DLDA can be viewed as a special case of the 

proposed KDDA algorithm.  

1. Introduction 
Feature extraction is the most fundamental problem in pattern recognition. For any pattern recognition 

application, extracting efficient features is always a key to solving the problem [1-2]. Among the many 

representations proposed in the literature algebraic features are very popular as they represent intrinsic 

attributes of an image. Turk and Pentland used eigenfaces as the bases for constructing features for 

human face recognition [3]. Hong and Yang proposed an algebraic feature method in which the 

components of a singular value vector were used as the image features [4]-[5]. Although eigenfaces and 

singular value vector have good properties for representing images, they are not quite suitable for 

recognizing images. Based on this viewpoint, Cheng presented an efficient approach to human face 

recognition based on projective images [6]. Also Foley-Sammon transform (FST) has been considered 

as an excellent method of dimensionality reduction in terms of discriminant information content 

[7]-[13]. Various methods of determining FST under different conditions have been developed for 

human facial image recognition [14]-[20]. Liu proposed a class separability criterion leading to a 

generalized optimal set of discriminant vectors. A unified approach to finding the vectors of the 

generalized optimal set was introduced [13]-[14]. Guo proposed an iterative algorithm to find the 

generalized optimal set of discriminant vectors [15]. Wu proposed an approximate analytical algorithm 

for determining the generalized optimal set of discriminant vectors [16]. An accurate analytical solution 
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to the problem is proposed in [17]. Chen developed an LDA-based face recognition system which can 

cope with the small sample size (SSS) problem [18]. However, it has been shown that the discarded 

null space may contain significant information which may be of benefit for the classification [19]-[21]. 

The so called direct linear discriminant analysis (DLDA) algorithm was advocated in [19]. Recently, an 

improved DLDA algorithm was suggested in [20].  

Although the idea of the new DLDA [20] is very important, it is still a linear method. It is impossible to 

solve the face recognition problem using a linear method because of the complex nature of human 

faces. Since much of the important information may be contained in higher order relationships among 

the image pixels of a face pattern, the non-linear discriminant analysis , i.e. the kernel discriminant 

analysis has been an attractive topic in the field of pattern recognition over the last five years [21]-[27]. 

Inspired by the idea of kernel direct discriminant analysis (KDDA) introduced in [21], this paper 

develops a new KDDA algorithm which is a kernel version of the DLDA algorithm in [20]. 

The rest of the paper is organized as follows. The new DLDA algorithm is overviewed in Section 2. 

The linear case of direct discriminant analysis is then generalized to the nonlinear case. The proposed 

KDDA algorithm is developed in Section 3. Experimental results are presented in Section 4 and 

conclusions are drawn in Section 5.  

2. An overview of the direct linear discriminant 

analysis (DLDA) algorithm 

We assume to have available a set of N training face images N,,izi 1 . Each image is defined 

as a vector of length hw IIM , i.e. M
i Rz , where M

 

is the face image size and 

MR denotes an M-dimensional real space. It is assumed that each image belongs to one of the C 

classes denoted by Cii ,,1 . The between-class scatter matrix bS and the within-class 

scatter matrix wS and the population mean vector can be obtained from the training samples. The 

new DLDA algorithm developed in [20] draws on a variant of discriminant analysis criterion and 

exploits the strength of the DLDA algorithm. 

The concrete steps of the new DLDA algorithm can be summarized as follows [20]: 

Input: A set of training face images N,,,i,zi 21 , each of which is represented as a 

M-dimensional vector. 

Output: A low-dimensional representation z* of z with enhanced discriminatory power obtained by 

transformation zA*z 0 .  

New DLDA Algorithm [20]: 

Step 1. Determine the set of eigenvectors of b
T
b associated with the 1Cm non-zero 

eigenvalues: mm f,,fF 1 , where CCb NN ,11 , and iN , i are 



the number of samples and mean vector of the i-th class respectively. 

Step 2. Calculate the first m most significant eigenvectors and the corresponding eigenvalues of bS by 

mb FY0 and ],,,[ 21 mb diag . 

Step 3. Let 2

1

00 bYZ , calculate the eigenvectors 0U and their corresponding eigenvalues w

 

of 

00 ZSZ w
T 

Step 4. Let 2

1

00000 wPQ,UZP , calculate the first m

 

most significant eigenvectors 0V and 

their corresponding eigenvalues t

 

of 00 QSQ t
T

, i.e. tt
TT VQSQV 0000 

Step 5. Let 
TTT VQQVA 00000 , the low dimensional transformed vector z* for each testing 

sample z is               

zA*z 0

  

3. Kernel version of the DLDA algorithm 

3.1 Dimension reduction based on the between-class scatter matrix in 

the kernel space 

A nonlinear mapping is associated with the kernel discriminant analysis. Let 

HzRz M: be a nonlinear mapping from the input space to a high-dimensional feature 

space H, where different classes of faces are linearly separable. Denoting the total mean of the all the 

images and the mean vector of the i-th class in the kernel space respectively as                         
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the between-class scatter matrix bC in the kernel space can be rewritten as follows, 
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Unfortunately, it is intractable to solve the eigenvalue problem of bC for the large dimensionality of 

kernel space. However, similarly to the general D-LDA framework developed in [19], we can solve the 

eigenvalue problem indirectly by finding the eigenvalue solution to b
T

b PP first. Computing 

b
T

b PP requires a dot product evaluation in the kernel space which can be done by utilizing the kernel 

approach [21].  

Accordingly, for two arbitrary classes l

 

and h , we define an hl NN dot product matrix lhK 

as: 
h

l
N,j
N,,iijlh kK

1
1 ,where 

jiji hlhlij z,zkk

 

which for all the classes C,,,i,i 21 , constitutes an NN

 

kernel matrix K, 

C,,h
C,,l

lhKK
1
1

 

The matrix allows us to express b
T

b PP as follows [21]: 
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where CN,,NdiagB 1 , NC1 is an CN matrix with all the terms equal to one, 

CNNNC a,,adiagA
1

 

is an CN block diagonal matrix, and 
iNa is an 1iN vector 

with all terms equal to 
iN

1
. 

Let i and ie be the i-th eigenvalue and its corresponding eigenvector of b
T

b PP C,,,i 21 , 

sorted in the decreasing order of magnitude. The first m eigenvectors, mbm EPy,,y,yY 21 ,  

whose corresponding eigenvalues are greater than 0, are used, where mm e,,e,eE 21 .  

3.2 The New Algorithm of Kernel Direct Discriminant Analysis 

Let mb diagD ,,1 , further let 2

1

bYDZ denote a projection matrix. Transforming the 

within-class scatter matrix wC into the subspace spanned by Z, we have 

ZCZC
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w
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Note that wC
~

is a tractable matrix with size mm . Let wD be a diagonal matrix of eigenvalues 



and further let U be a full matrix of eigenvevctors of matrix wC
~

. Clearly,  
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where I is an identity matrix. 

Let UDEPZUP bmb
2

1

and 2

1

wPDQ . Projecting the within-class scatter matrix wC and 

population scatter matrix tC into the subspace spanned by Q, we have IQCQ w
T and 
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Therefore, we can obtain a kernel representation of tC
~

using the kernel representation of b
T

b PP . 

In order to maximize the Fisher criterion function 

w
T

t
T

C
~
C
~

 

[28]-[29], we need only select the 

eigenvectors of tC
~

 

corresponding to the largest eigenvalues. We denote the selected eigenvectors as 

'mv,,v,vV 21 , and the corresponding diagonal matrix of eigenvales as tD . Note that tD is an 

'm'm

 

diagonal matrix. The optimal kernel discriminant feature extractor can be derived through 

TT QVA . 

According to the above analysis, the steps of the new KDDA algorithm can be summarized as follows: 

Input: The same as that of DLDA algorithm. 

Output: A formal representation of the kernel feature space with enhanced discriminatory power 

KDDA Algorithm: 

Step 1. Calculate the kernel matrix K. 

Step 2. Calculate the kernel representation of b
T

b PP and compute the eigenvectors of b
T

b PP with 

non-zero eigenvalues: 

mm e,,eE 1 , where 1cm and bP relates to T
bbb PPC

 



Step 3. Calculate the first m most significant eigenvectors of bS by mb EPY

 
and denote their 

corresponding eigenvalues as ],,,[ 21 mb diagD

  
Step 4. Let 2

1

bYDZ . Calculate the kernel representation of ZCZ w
T and the eigenvectors U 

and their corresponding eigenvalues wD of ZCZ w
T 

Step 5. Let 2

1

wPDQ,ZUP . Calculate the first m

 

most significant eigenvectors V of 

QCQC
~

t
T

t . The kernel feature space is then given as TT QVA . 

3.3 The Design of a Classifier in the Kernel Feature Space 

It should be noted that the kernel space cannot be determined explicitly as we do not have a 

representation of bP on which A is dependent. However, this problem can be solved at the stage of 

classifier design using once again the kernel technique. 

We illustrate the design process using the minimum distance classifier as an example. 

Let us project all the samples mapped by the kernel function into the kernel feature subspace spanned 

by A. i.e.                   
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The population mean vector m is then                          
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The projected samples, after centralization, can be represented as                         
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The mean vector of j-th class can be determined by                         
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For any test sample z, centralizing after projecting z

 

into A, we have 
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The minimum distance classifier then becomes            

iz

   
iff    j

C,,,j
i myminmy

21  

4. Experimental Results 

4.1 Experiments on ORL 

The Olivetti Research Lab (ORL) face database (http://www.cam-orl.co.uk/facedatabase.html) can be 

used freely for academic research. The Cambridge ORL database contains 40 distinct subjects, each 

subject having ten different images, taken at different times. The images are subject to varying lighting, 

changing facial expressions (open/closed eyes, smiling/nonsmiling), and facial details (glasses/no 

glasses). All the images are taken against a dark homogeneous background and the persons are in 

upright, frontal position (with a tolerance for some side movement). Four images per subject are chosen 

as training samples, the remaining six images are treated as test samples.  

    

Fig.1  Part of the images of ORL 

The experiments are made on ORL images of different sizes. Table 1 shows the performance 

comparison of the present algorithm and the algorithm in [21] both employing the polynomial kernel 

function 
d

jiji bxxaxxk , when 1ba , 2d . In contrast table 2 compares the 

two algorithms in the case of a linear kernel function with 1dba . The experimental results 

show that the two algorithms exhibit a similar performance on ORL which is a comparatively small 

database. It is interesting to note that the results of the new algorithm on ORL are exactly the same as 

those reported in [20] when a linear kernel function is adopted.  

http://www.cam-orl.co.uk/facedatabase.html


Table 1 The performance comparison of two algorithms 

Size of image Ref [21] (%) New algorithm (%) 

112 92 90.8 90.8 

56 46 91.3 91.3 

28 23 90.4 90.4 

14 12 90.4 90.4 

7 6 77.9 77.9 

 

Table 2 The performance comparison of the two algorithms based on a linear kernel function 

Size of image Ref [21] (%) New algorithm (%) 

112 92 90.8 90.8 

56 46 89.6 89.6 

28 23 90.8 90.8 

14 12 90.8 90.8 

7 6 76.7 76.7 

4.2 Experiments on XM2VTS 

The XM2VTS database is a multi-modal database consisting of face images, video sequences and 

speech recordings taken of 295 subjects at one month intervals. Since the data acquisition was 

distributed over a long period of time, significant variability of appearance of clients, e.g. changes of 

hair style, facial hair, shape and presence or absence of glasses, is present in the recordings. The 

XM2VTS database contains 4 sessions with 2 shots at each session [1]. The facial images of size 

55 51 were extracted from the XM2VTS with reference to manually annotated eye coordinates. 

Figure 2 shows examples of such manually extracted images. One half of the images are used for 

training and another half for testing. Table 3 shows a performance comparison of the present algorithm 

and the algorithm in [21] both employing the polynomial kernel function with a=1e-8,b=1,and d=2. 

Table 4 shows the performance comparison of the two algorithms based on the linear kernel function 

when a=1e-8,b=1,and d=1. The experimental results show that the proposed algorithm outperforms the 

previous one in terms of recognition accuracy. It is also interesting to note that the results of the new 

algorithm on XM2VTS are very similar to those reported in [20] when linear kernel function is 

adopted.  

        

Figure 2  Part of the automatic extracted images in XM2VTS  

Table 3 The performance comparison of two algorithms on XM2VTS 

Size of image Ref [21] (%) New algorithm (%) 

55 51 87.6 92.5 

28 26 81.3 91.4 

19 17 77.5 90.3 

9 8 60.9 71.7 

 



Table 4 The performance comparison of two algorithms on XM2VTS for linear kernel function 

Size of image Ref [21] (%) New algorithm (%) 

55 51 83.5 91.3 

28 26 78.9 91.2 

19 17 75.9 89.7 

9 8 60.7 79.5 

 

5. Conclusions 
In this paper, we have developed a novel kernel direct discriminant analysis (KDDA) algorithm which 

is a nonlinear version of the recently proposed DLDA algorithm. The results of the face recognition 

experiments show that the performance the new KDDA algorithm is very similar to that of the DLDA 

algorithm provided a linear kernel function is adopted. This confirms that the new KDDA algorithm 

generalizes DLDA algorithm. The research issues for future work include: (1) a study of the effect of 

the choice of kernel function on classifier performance. (2) an investigation of the trade off between the 

type of kernel function, number of classes, number of training samples, and the dimensionality of the 

feature space. (3) applications to other problems including face verification.  
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