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Abstract

We present an approach to full human-body tracking, using markerless multi-
view images as input, performing acquisition, reconstruction and tracking in
real-time on a single PC. Our approach employs a hierarchical visual-hull al-
gorithm which segments only the most interesting regions of the images and
includes colour information. The tracking step uses blobs attached to a kine-
matic model to recover joint angles in an expectation-maximization frame-
work. We demonstrate the robustness of the approach on video sequences of
various body configurations in an unaugmented office environment. We also
show that tracking challenging poses with self-occlusions is possible without
the processing cost of stochastic sampling schemes.

1 Introduction

The main challenge when recovering body poses from markerless images is the under-
constrained nature of the problem. Not only does a typical kinematic model have at least
25 degrees of freedom, but camera images provide very poor evidence of limb positions,
because of frequent problems such as self-occlusions, background segmentation errors,
and loose clothing.

The work presented in this paper addresses the problem of recovering posture param-
eters from video images of a scene as observed by multiple cameras. The goal of our
system is to operate in an unaugmented environment, in real-time on a single PC with
cheap webcams. These requirements immediately give rise to a number of challenges
such as robustness to noise and to a cluttered environment, camera distortions and lim-
ited processing power. The key goal of real-time performance (≥ 15fps) on commodity
hardware drives most of our design decisions.

Instead of performing the tracking step on each input frame, our system first recon-
structs a 3-D voxel-based representation of the person, and then performs the matching
of a kinematic model directly in this 3-D space. In addition to bringing more consistency,
this approach simplifies the tracking step, especially in the case of ambiguous poses and
self-occlusions. Novel aspects of our approach include a statistical reconstruction method
which incorporates colour information, and the use of blobs for robust real-time tracking.

We begin by summarising some previous approaches to recovering human body pa-
rameters from video images. Section 3 focuses on our 3-D reconstruction method, and the
tracking process is described in Section 4. We present results and performance analysis
in Section 5, and conclude by discussing future research directions.
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2 Previous Work

Several kinds of visual cues have been used to track human body movements from video
images. Gavrilla and Davis [8] project a kinematic model associated with superquadrics
on the image planes and perform a best-fit search using contours as a similarity mea-
sure. Delamarre and Faugeras [6] obtain good results using multi-view silhouettes to
drive a kinematic model with virtual springs, while Wrenet al. [15] introduce a statistical
description of the whole scene making use of colour, and achieving convincing results,
although their system works only in 2-D. Other image-based attempts range from the use
of appearance models [5] to probabilistic filtering [11]. A common trend has been to use
3-D models, which has led to more robust results. For example, Bregler [2] presents a
novel description of human models with twists and exponential maps to solve the under-
constrained problem of tracking.

Recently there has been interest in multi-view systems which use a prior 3-D recon-
struction as a basis for tracking. The most common technique is the shape-from-silhouette
or visual-hull technique [12]. Using an efficient sparse occupancy reconstruction tech-
nique, Cheunget al. [4] fit ellipsoids in real-time (using a cluster of PCs) on the recon-
structed voxels. Lucket al.[9] and Mikic et al.[10] extend this approach by incorporating
a kinematic model, at the cost of losing the real-time aspect. Theobaltet al. [13] use a
combination of voxel-based reconstruction and 2-D feature tracking to drive a bi-layered
model. Borovikov and Davis [1] adopt a full hierarchical approach by using a formal den-
sity description to fit a model on the 3-D data, where the visual-hull is built efficiently as
an octree. Other relevant 3-D methods include the work on temporal visual-hull alignment
and refinement by Cheung [3].

The work described in this paper extends some of the ideas from the Pfinder Sys-
tem [15] into 3-D space, with the addition of a kinematic model replacing the Kalman
filter for blobs dynamics. Figure 1 shows a general overview of the system.

3 Statistical 3-D Reconstruction

3.1 Overview and Design Choices

The visual-hull of an object is defined as the maximal portion of space which, projected
into the camera image planes, lies totally inside all the silhouettes of the object. This
definition holds for an infinite number of views, but since current hardware can support
only a few cameras, an approximation will be used instead (Figure 1a). The standard
algorithm for computing a visual-hull is to start from voxels in 3-D space, project them
into the available image planes and keep only those which lie inside all the silhouettes
of the object [12]. Our approach is very similar to this, except that it does not use full
binary silhouettes but per-sample statistical background segmentation within a coarse to
fine recursive algorithm (Section 3.3).

Using the visual-hull as a basis for tracking is mainly justified by the consistency
of the approach: the tracking algorithms will then be working directly in 3-D space,
independent of the camera parameters. This visual-hull extraction acts as a filter where
only the valuable information is kept (volume and colour) whereas noise is dismissed due
to its non-coherence across different views. The main drawbacks of this approach are



Figure 1: Overview of the system with (a) the prior 3-D reconstruction and (b) the model
based tracking (The motion prediction module is the subject of future work).

processing costs and storage requirements, but we shall describe methods for minimizing
both, in order to attain real-time performance.

The cameras are calibrated using Bouguet’s Matlab toolbox, which is based on Zhang’s
method [16]. Synchronization is either done in hardware via the FireWire bus when all the
cameras are plugged on the same PC, or over a network using a frame-server approach.
Both types of input are supported by our system.

3.2 Voxel Projection and Background Segmentation

The projection of a voxel onto an image plane is an area that should theoretically be ex-
haustively inspected. However, for efficiency, we sample this area using pre-computed
patterns of 8 points (Figure 2e). For each sample, a measure of likelihood that the corre-
sponding pixel belongs to either the foreground or the background is computed. Statistics
over the sampling are then used to classify the whole voxel (Section 3.3). As in most other
systems [15, 4, 10], we assume that the background is static during the tracking. For each
pixel, the background modelM comprises the mean valueµM and the covariance matrix
KM of the corresponding[YUV] pixel components over around 50 frames captured be-
forehand to the tracking. The Mahalanobis distance is then computed for a pixelP as
follows:

dst(P,M) = (P−µM) ·K−1
M · (P−µM)T (1)

This formulation benefits from hardware acceleration, since up to 4 matrix-vector multi-
plications may be performed in parallel with SIMD instructions like SSE, leading to an
effective speedup factor of 2 to 3 times.

Shadows are not specifically handled in this representation, but our tests showed that
relaxing the variance on the luminance componentY of the covariance matrix allowed
most of the illumination artifacts to be removed without seriously affecting the quality of
the segmentation. Note that no binary decision is taken at this stage about the classifica-
tion of individual pixel samples as belonging to foreground or background. This decision



Figure 2: Projection of a voxel on an image plane, sampling of the projected area (e) and
subsequent classification as background (a), edge (b), foreground (c) or unknown (d).

is only taken for the whole voxel, considering the statistics of the samplings in all the
views.

3.3 Recursive 3-D Reconstruction

An important architectural choice is to compute the visual-hull volume hierarchically. The
Octree representation [12, 1] was rejected because of its high memory usage. Instead, in
our scheme each voxel is created dynamically during the recursive reconstruction process.
An arbitrary level of accuracy can then be reached in the regions where it is needed,
without the memory footprint of a rigid data structure.

Initially, a coarse 16×16×16 grid of voxels is projected onto the image plane of
each camera. For each voxel projection, the meanµ and the varianceSof the distances
(Equation 1) to the background model over the sampling are computed. Using a low and
a high threshold(TL

µ ,TH
µ ) on the mean distance of the samples, as well as an adaptive

thresholdTS on their variance, the classification of a voxel now takes place as follows:

• if(µ < TL
µ ) the voxel is immediately classified as background (Figure 2a) and then

discarded without reference to any other camera views.

• if(S> TS) the current voxel is temporarily marked as belonging to an edge (because
of its high variance), but we still project it on the other views in case it can be seen
as background from another viewpoint. If after projection on all the views, the
voxel has not been discarded, it is subdivided into 8 sub-voxels (Figure 2b), and the
classification process begins again recursively for each sub-voxel.

• if(µ > TH
µ ) then in the current view, we may be reasonably confident that this voxel

is foreground. Of course it still needs to be projected on the other views to make
sure it is not eventually part of the background or an edge. If it is foreground
from all the views, it is classified as such and retained as part of the reconstruction
(Figure 2c).

• Otherwise, it means that the variance is quite low and the mean is somewhere
between the two thresholds of certainty. Because we cannot infer anything definite



about the current voxel, it is therefore temporarily classified as unknown (Figure 2d)
and the other views are inspected to disambiguate the situation. If the voxel is
still marked as unknown after all the views have been consulted, we look at the
classification of the neighbour voxels, and give it the classification of the majority.

The recursive nature of the process leads to flexibility. For example, there is no need
to maintain a static data-structure: each of the voxels gets its position from its parent, and
is only created physically when it has been classified as foreground. The base position
and the size of the zone of interest are then modified dynamically at no extra cost using
the predicted model position from the previous frame.

One of the novelties of the reconstruction is that all foreground voxels include colour
information. The mean colours of all samplings as seen by the available camera views are
kept in each voxel. We do not perform any kind of visibility test at this stage to determine
the real colour of the voxel since the colour that fits best the model will automatically be
used, as described in the next section.

4 Model-Based Tracking

4.1 Blobs Matching with EM

Having extracted the visual-hull, we proceed by identifying the individual parts of the
body, and following their movement from one frame to the next. This is a complex prob-
lem which requires knowledge about both the appearance and the dynamics of the objects
being tracked. In our system, the appearance is modeled by entities calledblobs, which
track sets of voxels sharing coherent attributes. The attributes of a given voxelv are its
positionPv and colours from every view{Cv,i , i ∈ [0..N−1]} with N being the number
of views. A given blobB is a statistical entity defined by a mean position and colour
(µ,µ ′) and the corresponding covariance matrices(K,K′). The process used to match
blobs to groups of voxels is a variant of the well-known Expectation-Maximization (EM)
algorithm [7] which proceeds in 2 steps:

Step 1: Expectation (Figure 3a)

For each voxelv compute the distance to every blobB j using the Mahalanobis distance
dst, which is fundamentally the same as in Equation 1. Then, assign the voxel to the
nearest blob:

dst(v,B j) = (Pv−µ j) ·K−1 · (Pv−µ j)T + min
i∈[0..N−1]

(Cv,i−µ
′
j) ·K′

−1 · (Cv,i−µ
′
j) (2)

Bargminj (dst(v,B j ))← v (3)

Note that the colour minimizing the distance to the nearest blob is used, reducing the
effect of occlusions, without the cost of a visibility test.

Step 2: Maximization (Figure 3b)

Estimate the new means and covariances(µ̂ j , µ̂ ′j , K̂ j , K̂′j) of each blobB j using the set of
voxels assigned to it. We shall notesv the size of a voxelv, Cv its colour minimizing the



Figure 3: (a) Expectation: the voxels are assigned to the nearest blob. (b) Maximization:
The blobs parameters are re-estimated.

distance to the blobB j in Equation 2, and finallykv = s5
v

12.I3 its internal covariance matrix.

µ̂i = E[Pv] =
∑v∈Bi

sv
3.Pv

∑v∈Bi
sv3 µ̂ ′i = E[Cv] =

∑v∈Bi
sv
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sv3
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= ∑v∈Bi
kv+sv
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v
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i

K̂′i = E[(Cv− µ̂ ′i )(Cv− µ̂ ′i )
T ]

= ∑v∈Bi
sv

3.Cv·CT
v

∑v∈Bi
sv3 − µ̂ ′i · (µ̂ ′i )

T

(4)

Constraints are placed on the maximization step to ensure that the appearance of the blob
does not change too radically from one frame to the next. The use ofa priori knowledge
for colour mean and variance, and position variance (shape) gives strong hints about the
kind of attributes a blob is supposed to track. For example, a blob supposed to track a
hand will initially have a very strong prior of skin colour as well as a determined shape,
whereas a blob created dynamically to track a forearm will have poor priors.

The formulation of the distance used in the expectation step (Equation 2) assumes that
distances on position and colour are coherent. This is usually the case since the covariance
matrices act as scaling factors. It can however happen that the voxels assigned to a blob
are too similar in colour, leading to a predominance of the colour information over the
position. To prevent this effect, we rescaleK̂′i when its determinant is too small.

The two steps of the EM algorithms are iterated until the error becomes sufficiently
small. A simple but efficient measure of the error is the level of filling of the blobs: all the
blobs should be assigned a volume of voxels in relation to their size. In practice, a single
iteration is usually sufficient.

4.2 Model Pose Estimation

We use a kinematic model to constrain the blobs’ movements and to recover the body
parameters. Our model is a simple hierarchy of joints and bones, with constraints placed
on the rotation angles of each joint. Each blob is attached to an arbitrary position along a
bone segment. The positions and orientations of the blobs after the maximization step are
used to drive the model with an inverse kinematics algorithm.



The first step is to compute the goal position of each joint from the blobs attached to
the adjacent bones, regardless of the model constraints. It is an optimization process that
uses both the attributes of the blobs and the predicted placement of the bone segments
from the previous frame. The main axis of a blob gives a very valuable estimation of
the orientation of the corresponding bone segment, especially for oblong body parts such
as the limbs. Extracting the main eigenvector from a covariance matrix is usually done
via a principal component analysis, but we found this approach inappropriate for real-
time purposes. We perform instead a local iterative maximization of the main eigenvalue
around the predicted eigenvector, which proved very fast and robust in practice. For
rounder body parts like the head or the hands, no orientation is computed.

In a second step, we use the goal positions of the joints to optimize the model pa-
rameters with inverse kinematics. Our implementation is based on the Coordinate Cyclic
Descent method [14] which sequentially performs a local optimization of joint angles
from the end-effectors (hands, feet and head) down to the root of the kinematic tree. This
local optimization consists in minimizing the distances between the following joints in
the kinematic tree and their goal position by acting only on the current joint’s angle. An
attenuation factor is used to smooth the movements and a few iterations of the process are
then necessary. We found this 2-step approach very robust, especially in the case of miss-
ing data where the inverse kinematics algorithm accommodates easily with the absence
of some goals.

Finding reliably the position and orientation of the root of the tree (pelvis) is crucial
for the above inverse kinematics scheme, and must be done beforehand. We determine
those as the parameters minimizing the Euclidean distances between the goals and the ac-
tual joints for the hips, the torso and the shoulders. The new root’s rotation is constrained
by the previous orientation to prevent sudden back/front flippings. We also found the
root-position to be more stable by constraining at least one part of the body to touch the
floor. For initialization, the subject is asked to adopt a starfish position during which the
model is positioned using the eigenvectors of the voxels’ distribution. A few frames are
typically sufficient for the blobs to acquire their colour and shape models before starting
tracking.

4.3 Re-Generation of the Blobs

The kinematic model is not only used to recover the body parameters, but to correct the
blobs’ attributes as well. Without model-based adjustments, the blobs would degenerate,
especially in the presence of noise or occlusions. Blobs are re-created at each frame
before the expectation step, using their attached position from the kinematic model and
their estimated attributes from the previous maximization. Depending on the strength of
the priors in shape and colour, the covariance matrices are either kept or blended with the
prior’s.

One of the most challenging aspects of body tracking is to deal with occlusions. A
blob is considered as occluded when its level of filling after the EM steps falls below a
given percentage of its prior volume. When this happens, the blob is simply de-activated
in the sense that it does not take part in the Maximization step anymore, and it is not used
to drive the kinematic model. However, the blob’s position is still updated by the move-
ments of the underlying kinematic model, and it still receives voxels in the Expectation
step. Thus, if and when its level of filling returns to a significant level, it is re-activated.



Figure 4: 3-D reconstruction with (left) dots representing the pixel samples used for re-
construction on the input camera-views and (right) the resulting visual-hull.

5 Results

The configuration used for the tests is a single 2GHz PC with a FireWire interface and
four web-cams capable of 320×240 at 30Hz or 640×480 at 15Hz. The resolution of
the input images does not affect the speed of the reconstruction as the segmentation is
done per voxel. The voxel-space has a maximal resolution of 128×128×128, which
corresponds to a precision of 1.5 centimetres.

The 3-D reconstruction process is demonstrated in Figure 4. We can notice that less
and less samples (red dots on the input images) are necessary on consecutive camera
views, concentrating only on the foreground regions. The consequence of this is that
additional camera views can be added at a negligible extra-cost. The reconstruction ran
on average at 62fps with 2 cameras, 57fps with 3 cameras, and 61fps with 4 cameras.
Our explanation for these results is that the voxels quickly discarded by adding camera
views roughly compensate the cost of the extra samples.

Tracking results are presented in Figure 5. We found the model-based pose estima-
tion very robust to noise and self occlusions that are not always solved by the visual-hull
algorithm. The processing costs of EM blob fitting and model matching are relatively
small, thanks to the hierarchical voxel reconstruction, allowing the image capture, recon-
struction and tracking to run at 15fps. Figure 6 highlights the advantage of using colour
information for cases where the standard visual-hull is insufficient.

6 Conclusion and Future Work

We have presented a system performing robust and accurate full human-body tracking in
real-time on commodity hardware. Novelties include per-sample statistical 3-D recon-
struction and the use of coloured voxels for tracking. The presented results confirm the
validity of the approach for real-time applications, despite the additional reconstruction
step. Future work will include motion prediction and filtering to limit the small jitters
currently affecting the model’s movements. We also intend to improve the model’s con-
straints, possibly using learned Bayesian priors.



Figure 5: Examples of tracking for various body configurations. The reconstruction is
performed from 4 camera views of which two are shown on the left. The displayed voxels’
colours are the mean of the colours in all views. It can be noticed that shadows, cluttered
environment and the self-occlusions lead to segmentation and reconstruction errors, which
are mostly dismissed by the model matching.

(a) (b) (c)

Figure 6: In cases where limbs are close to the body (a), or more generally when self-
occlusions occur, tracking using only the voxel volume gives poor results. However,
using colour information (c) increases the likelihood of correct pose estimation.
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