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Abstract

We describe an investigation into feature representations for rigid struc-
ture recognition framework for recognition of objects with a multitude of
classes. The intended application is automatic recognition of vehicle type
for secure access and traffic monitoring applications, a problem not hitherto
considered at such a level of accuracy. We demonstrate that a relatively sim-
ple set of features extracted from sections of car front images can be used
to obtain high performance verification and recognition of vehicle type (both
car model and class). We describe the approach and resulting system in full,
and the results of experiments comparing a wide variety of different features.
The final system is capable of recognition rates of over 93% and verifica-
tion equal error rates of fewer than 5.6% when tested on over 1000 images
containing 77 different classes. The system is shown to be robust for a wide
range of weather and lighting conditions.

1 Introduction

Increased security awareness in recent years has made the need for various authentication
technologies increasingly pertinent. Various access control systems that use techniques
such as biometrics and smart cards are increasingly applied to authenticate and restrict ac-
cess to users and intruders respectively. Recently, vehicle based access control systems for
buildings, outdoor sites and even housing estates have become commonplace. Addition-
ally, various traffic monitoring and control systems that depend on user (man+vehicle)
identification, such as congestion charging would also benefit by augmenting existing
number-plate recognition with an additional authentication mechanism. Given an image
containing a frontal view of a vehicle (car), a system is proposed here that determines its
exact class (make and model). The aim is to obtain reliable classification of a vehicle in
the image from a multitude of possible classes (vehicle types) using a limited number of
prior examples (only one per class).

Although classification of road going vehicles has been a subject of interest in the
past, e.g. traffic control systems and toll levy automation, vehicle type recognition has
not hitherto been considered at this level of accuracy. Instead, most systems either de-
tect (clasify vehicle or background) or classify vehicles in broad categories such as cars,
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buses, heavy goods vehicles (HGVs) etc. [5, 2, 6, 7, 11, 1]. Kato et. al. [5] propose a ve-
hicle detection and classification method based on the multi-clustered modified quadratic
discriminant function (MC-MQDF) that is reported to exhibit high levels of detection of a
range of vehicle types against road environment backgrounds. For the same application,
Matthews et. al. [7] propose a region of interest designator based on simple, horizontal
and vertical edge responses and shadow detection followed by a Principal Component
Analysis (PCA) feature extractor. Features are input into a multi-layer perceptron (MLP)
network that discriminates between vehicle and background [7].

Parameterised 3D deformable models of vehicle structure are another approach used
in classification between broad categories of vehicles [2, 6, 11]. Ferryman et. al. [2]
use a PCA description of the manually sampled geometric data to define a deformable
model of a vehicles 3D structure. By fitting this model to an image, both the pose and
structure of the vehicle can be recovered and used to discriminate between the different
vehicle categories [2]. An extension of this approach uses MLP networks to perform the
classification based on the model parameters [11]. A similar approach is adopted in Lai et.
al. [6] where a deformable model is fit to the image in order to obtain vehicle dimensions,
which are the basis for discrimination between vehicle categories. A related approach
using deformable templates for vehicle segmentation and recognition is employed in [1].

The recognition system proposed in this paper is based on recognising rigid structure
samples obtained using specific feature extraction techniques from an image of the object
(vehicle). Recognition is initiated through an algorithm that locates a reference segment
on the object, in this case the front number plate. The location and scale of this segment
is used as reference to define a region of interest in the image from which the structure is
sampled. A number of feature extraction algorithms that perform this task, including di-
rect and statistical mapping methods are investigated. Feature vectors are finally classified
using simple nearest neighbour classification. Different system configurations are tested
on a realistic data set of over 1000 images and show that this approach achieves very high
levels of both identification and verification performance. In the following the method is
described in more detail and the results of verification and recognition performance on a
large dataset of realistic vehicle images are presented.

2 Vehicle Type Recognition

The scope and complexity of the recognition problem considered in this paper is exem-
plified by the extensive database of car images, illustrated in Figure 1, with 1132 images
ordered into 77 distinct classes, such as Mercedes A class, Ford Puma, Peugeot 406 etc.
Many classes describe different versions of the same car, e.g. Fiat Punto and Fiat Punto
New. In our experiments, 105 images are used for registration (training) and 1027 for
evaluation of the proposed system. Subtle varieties of the same model, e.g. different bot-
tom grill between two Puntos in the bottom right of Figure 1, are represented by additional
examples in the otherwise one example-per-class registration set. This approach is con-
sidered as more testing for the recognition process compared to using several examples
of each class displaying more variation in lighting and pose.

The images in the dataset were obtained over a period of two months and exhibit
a variety of weather and lighting conditions. Most are outdoor, although a proportion
(10%) were captured in a multi-storey car park and exhibit extreme lighting conditions.



Figure 1: Examples from the data set of frontal car images

All contain frontal views of a single vehicle (with no occlusion) captured from varying
distance and a height of approximately 1.2m. However, the camera was not fixed and there
is significant variation in both the scale and in-plane rotation of the vehicle in the images.
In particular, the horizontal axis is within a range of ±5 degrees of the image horizontal.
The images are 640x480 colour pixels, although the proposed system consideres only
grey level intensities produced using a weighted sum of the colour channels.

The recognition system proposed in this paper is based on the principle of locating,
extracting and recognising normalised structure samples taken from a reference image
patch on the front of the vehicle, structure Figure 2. The process initialled by locating
a reference segment on the object (in this case number-plate) and defining a region of
interest (RoI) relative to it. The RoI is processed by the feature extraction element to
define a normalised sample of the structure within it. The structure is expressed in a
feature vector of pre-defined length that is representative of the vehicle identity. Finally,
simple nearest neighbour classification is used to determine the vehicle type associated
with each vector.

Figure 2: Basic structure of the automatic vehicle type recognition system



3 Recognition Approach

3.1 Reference Detection and Location

The location and scale of a reference structure on the object defines a reference frame for
the region of interest to be sampled. An RoI defined relative to the number-plate is thus
independent on the actual location and scale of the vehicle in the image.

Number-plates are highly regular rectangles. To locate them, our system finds all
possible righ-angle corners using suitably tuned, separable gradient filters. A hierarchical
algorithm for aggregation of corner points into valid rectangular constallations is used to
generate hypotheses for the plate location in the image. A number of scale and aspect
constraints are used to remove unsuitable candidates, many caused by the characters on
the plate and regular vehicle structure features, and of the remaining candidates the one
with best corner structure fit to each of its corners is chosen. RoI is defined in terms of
number plate width wp relative to its center, as shown on Figure 3.

Figure 3: Region of Interest defined relative to vehicle number plate

3.2 Feature Extraction

Feature extraction from the Region of Interest provides a structure representation used to
recognise the object. The approach used in vehicle type recognition is illustrated in Figure
4. Initially, the RoI is down-sampled to a desired fixed resolution NxM (preceded by
suitable smoothing). For vehicle images, horizontal resolution is more severely reduced
as the structure is significantly more redundant in that direction.

From the scale normalised image I’, structure was extracted into a feature vector using
a broad range of both direct and statistical structure mapping methods. Direct mapping
with relatively simple, local structure operators such as gradients, produces feature sam-
ples same size as the original signal that preserve both the global structure and finer lo-
calised details. A subset of the most significant feature extraction techniques investigated
is summarised in Table 3.2 [8, 9, 3, 10].

Raw image values concatenated into a feature vector f raw, form the most direct repre-
sentation of vehicle appearance and serve as a general reference for other, more complex
and robust representations. Sobel gradients sx and sy, as derivatives, are less sensitive to
lighting conditions and can be even more robust by making them independent of contrast;
Direct Normalised (DN) gradients are vectors on the unit circle with orientation in the
range [−π to π), fDN . Locally Normalised (LN) gradients gLN also take into account lo-
cal structure by normalising each Sobel gradient (sx,sy) with the average edge strength



Figure 4: Feature extraction process in the proposed vehicle recognition system

Approach Structure Representation
Raw Image I’
Sobel Edge Response (sx,sy)
Edge Orientation sα = arctan(sx/sy)
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Table 1: Feature extraction approaches investigated

√
s2
x + s2

y , gL over an LxL neighbourhood around the pixel. Pixels lying on prominent

edges thus exhibit higher values while less significant gradients tend towards zero. Fur-
ther robustness can be added by restricting the range of orientation to 0 to π . The Square
Mapped (SM) gradients (gSM

x ,gSM
y ) lie on the unit circle and represent axis parallel (gSM

x )
and diagonal (gSM

y ) components of signal change. This representation is robust to noise
and small changes in edge direction, which makes it particularly suitable for local struc-
ture representation. Harris corner detector [3], which measures the similarity of local
structure to a corner was also considered since vehicle fronts contain regular features and
numerous, tightly localised and well-defined corners. Finally, spectrum phase f φ , of the
scale normalised image sample was also considered as a representation of global structure.

Figure 5 visualises some of these structure representations. The top row contains the
50x120 pixel normalised raw image sample, Harris corner detector response, spectrum
phase, and the x and y Sobel edge responses. The second row in turn contains w (see
below) and the x and y components of the LN and SM gradients. Vehicle structure is
easily discernable only in gradient images.

As an alternative to direct mapping methods, a statistical approach using Principal
Component Analysis [4] was considered to determine a low dimensional, optimal struc-
ture representation that contains the majority of between class variation. Initially, feature



Figure 5: Feature extraction examples, see text for explanation

extraction is performed on the registration set using the methods outlined above. PCA
is then applied to the registration set, obtaining at most Nreg eigenvectors of the data
covariance matrix, where Nreg is the number of registration set examples. Eigenvectors
corresponding to the largest eigenvalues and pre-defined proportion of the total variation
in the data are ordered into a transformation matrix P, to project original feature vectors
into a lower dimensional subspace, fPCA = PT f. Thus, with 105 registration examples,
section 2, the transformed PCA space can have at most 105 dimensions.

3.3 Statistical Sample Normalisation

In order to improve recognition performance of rigid structure feature extraction, addi-
tional normalisation of structure samples is proposed. The aim is to ephasise areas of the
rigid structure that exhibit the greatest variation over the registration set (between differ-
ent classes). Initially, the average confidence of each structure element (pixel) is found
as the average, normalised, edge strength at the pixel across the registration set, s = E[s i

g]
where si

g is edge strength accross the i-th registration image segment. This elementwise
confidence score modulates the elementwise variance of the registration structure vectors,
v, into a weighting vector w, equation 1. Accordingly, w should exhibit larger values in
locations where feature samples of various classes exhibit higher energy and differ signif-
icantly. Finally, w is used to weight and normalise feature vectors extracted from image
data, equation 2.

w =
diag(v)s
|diag(v)s| (1)

f′ =
diag(w)

1
2 f

|diag(w)
1
2 f|

(2)

For vehicle type recognition the elements of w corresponding to the number plate
region are set to 0, as the licence characters do not correlate with vehicle class and merely
confound classification. The w obtained for the x component of f SM , shown in the bottom
left of Figure 5 clearly highlights the structures important for discriminating between
various vehicle classes: shape of the lights and the badge.



3.4 Classification

We investigated two distance measures to compare test and registration samples, the dot
product d = 1− fT

1 f2 and the euclidean distance d = |f1 − f2|. The identity of the test
sample was then determined using the nearest neighbour rule. We found the two measures
gave similar results, with the dot product slightly outperforming the euclidean distance.
Results presented below are thus given for the dot product measure.

4 Results

The various feature extraction methods described in the previous section were tested
within the proposed recognition system using the vehicle data described in section 2.
Both their direct identification (what type of vehicle is it?) and verification (is it this type
of vehicle?) performance is given in Table 2, where Pid is the probability of correct identi-
fication and Equal Error Rate, EER the point at which probabilities of false acceptance and
false rejection are equivalent. The results were obtained using manually marked number-
plate locations, i.e. ideally defined RoIs for both registration and test images, so that only
feature extraction strategy influences the performance. In each case, the scale-normalised
sample was 50x120 pixels and classification used the dot product distance metric. For the
PCA representation, 95% of the registration set variation was considered as it produces
the optimal results for most of the feature extraction techniques considered. The resulting
number of principal components (dimensions) for each feature representation is given in
the rightmost column of Table 2.

Identification Pid(%) Verification EER(%) PCA(95% var)
Direct PCA Direct PCA Ndims

Locally normed grads 47.3 79.3 23.8 9.8 91
Edge orientation 54.9 57.9 19.8 18.9 96
Raw pixel values 62.8 4.5 19.8 46.7 68
Harris corner detector 72.4 25.0 9.6 29.6 70
Sobel edge responses 75.0 74.7 13.8 13.3 85
Spectrum phase 82.5 48.4 9.4 23.8 97
Direct normed grads 84.5 83.9 8.1 8.7 93
Square mapped grads 97.7 95.1 3.5 4.9 95

Table 2: Recognition performance of various feature representations, Parking Lot data set

For all feature types, except LN gradients, rigid, direct feature mapping provides for
correct identification of a majority of vehicles in the test image set. At the same time,
PCA produces slightly worse results for most structure representations. Square mapped
gradients exhibit the best performance overall with Pid as high as 97.7% and EER is as low
as 3.5% for direct and Pid = 95.1%, EER=4.9% for PCA structure representation. Gradi-
ent features generally perform best, with spectrum phase also achieving EER< 10%. This
result suggests that independence from vehicle colour and contrast is an advantage in rep-
resenting vehicle structure, which is expected considering the wide range of conditions
under which the test images were obtained. The square normalised gradients with lim-
ited orientation range are additionally robust to small noise induced changes in gradient



orientation, key recognition information. Contrast information, incorporated into locally
normalised and Sobel gradients, varies unpredictably with the conditions and more im-
portantly with the colour of the vehicle. Finally, results close to ideal also justify the
relatively simple rigid structure approach.

The effect of structure sample normalisation on performance is easily demonstrated
by performing recognition with w set to 1 (apart from number plate). Such a system,
using SM gradients, achieves lower Pid =95.8% and higher EER=6.5%.

a) ROC curves for different features b) PDFs (left true, right false matches)

Figure 6: Verification ROC curves and PDFs of the true and false distances for the Square
Mapped Gradient case

Verification performance is also illustrated graphically for a subset of direct feature
representations on the ROC curve in Figure 6a. For an 80% correct acceptance rate, false
acceptance rate of the SM gradients system is less that 0.4% (solid line). Distributions
of classification distances between examples of the same and different classes are shown
in dotted lines in Figure 6b. Almost perfect Gaussians, Gaussian fit shown as solid lines,
indicates that an analytic confidence score associated with the recognition performed by
the system can easily be derived from these distributions.

The proposed vehicle recognition system was also tested on an additional, realistic
access control application data set. Frontal images were captured from a distance of 10
and a height of 3m, approximately 20 degrees of the main vehicle axis. 21 different
vehicle types were enrolled with one image each and the system was tested with 204
test images. The test images were captured under a variety of athmospheric conditions
(sunny, rain and overcast) and various times of day (daylight, dusk). In general, this data
set contains fewer different vehicles (registered vehicles repeat in the test set), however
the vehicles exhibit a higher range of out-of-plane rotation and location and the images
are of lower quality than the ”Parking Lot” data set. Recognition performance for this
data set, given for a chosen subset of structure representations in Table 3, correspond well
to the results in Table 2 with gradient features giving the best results. This time however,
both Harris corner detector and raw pixel values perform well as the number of vehicles
in the test set is reduced and colour correspondency exists with the registered examples.

A number of incorrectly recognised vehicles (SM grads) from both datasets are shown
in Figure 7. The main modes of failure in the ”Parking Lot” data, top row, include severe
in-plane rotation and poor lighting conditions. The latter is also a source of errors with
”Access Control” data, bottom row, along with severe out-of-plane rotation.



Identification Pid(%) Verification EER(%)
Direct PCA Direct PCA

Raw pixel values 91.2 6.4 10.5 47.2
Harris corner detector 96.6 40.7 3.5 24.1
Direct normed grads 98.0 93.1 3.4 5.8
Square mapped grads 98.0 93.6 5.9 16.5

Table 3: Recognition performance for Access Control data set

Figure 7: Recognition failures with square mapped gradient feature extraction

4.1 Automatic Recognition System Performance

While the results presented above are based on manually located RoIs and depend on
the feature extraction approach only, realistic vehicle recognition systems must locate the
vehicle front automatically. Our number-plate location algorithm, tested independently
on 1206 ”Parking Lot” car images, correctly located the number-plate (to within 5 pixels)
in 93.3% of the cases with an average error of 2.74 pixels per corner point. Integrated
with Square Mapped gradient feature extraction, the whole system correctly identifies
93.3% vehicles with a verification Equal Error Rate of 5.6% for the ”Parking Lot” data.
For ”Access Control” data performance is worse at Pid = 87.7% and EER = 10.1% .
We can thus conclude that reference location limits performance as by en large all the
images in which the number plate is incorrectly located result in a recognition error. For
both data sets, the low dimensional PCA representation gives worse performace, at best
Pid = 90.6% and EER = 6.8% and Pid = 72.1% and EER = 16.3%. Such high levels of
performance for a highly complex recognition task (77 classes) clearly justify the adopted
rigid structure approach that preserves well the global structure of object apearance and
proves its robustness.

5 Conclusions

This paper presents an investigation into various feature extraction techniques in a rigid
structure approach to automatic recognition of vehicle types. It was shown that certain
gradient representations, such as the square mapped gradients, are capable of accurate and



reliable recognition of vehicles from frontal views under a variety of conditions. Their
inherent insensitivity to small changes in gradient orientation and noise coupled with a
rigid sampling approach preserves both global and local object structure in a robust man-
ner. Additional statistical normalisation of structure samples provides further recognition
confidence by emphasising structural differences between various object classes. Such
direct structure recognition systems are capable of Correct identification performance in
excess of 93% and a verification Equal Error Rate of less than 5.7% demonstrated on a
realistic data sets of over 1000 frontal images of cars taken under a range of varying con-
ditions fully justify this relatively simple approach. At the same time, statistical structure
representations, using PCA, showed less robustness in both recognition and verification.
Further work on this approach involves extending the system to deal with a wider range of
viewpoints and in plane rotations as well recognition of more general classes of objects.
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