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Abstract

Central catadioptric sensors enable to acquire panoramic images on a 360
degree field of view while preserving a single viewpoint. These advantages
account for the growing use of these sensors in applications such as surveil-
lance, navigation or modelling. However, the deformations of the image do
not allow to apply classical perspective image algorithms or operators. Typ-
ically, straight line detection in perspective image becomes a delicate and
complex conic detection problem in central catadioptric image. Previous
methods proposed in the literature were essentially motivated by particular
cases such as horizontal line detection or paracatadioptric line detection. In
this paper, we propose an algorithm which consists in performing the de-
tection in the space of the equivalent sphere which is the unified domain of
central catadioptric sensors. On this sphere, real lines are projected into great
circles that we detect thanks to the Hough transform. We also propose to
apply this unifying model in order to perform the calibration of the intrinsic
parameters required for the projection on the sphere. We show results on
synthetic and real catadioptric images (parabolic, hyperbolic) to demonstrate
the relevance of the detection on the sphere.

1 Introduction

Omnidirectional sensors capture a very large field of view which provide significant ad-
vantages in comparison with classical cameras. Thus, applications such as surveillance,
model construction, mobile robot localization and navigation increasingly integrate these
sensors. In order to obtain a panoramic vision, different systems have been proposed such
as a rotating camera, a camera network, a fish eye lens and the combination of a convex
mirror with a conventional camera [5]. This last category named catadioptric sensors has
received a lot of attention in the last ten years [15] [1] [12] [13].
Catadioptric sensors can be divided into two classes according to the constraint of the
viewpoint [1]. We can differenciate respectively the central catadioptric sensors with
a single viewpoint and the non-central catadioptric sensors which do not have a single
viewpoint. This characteristic is very important because it permits the reconstruction of
geometrically correct perspective images from the catadioptric images [2] and [1].

In this paper, we are particularly interested in the detection of central catadioptric lines
which are very useful for applications such as tracking, localization or 3D reconstruction.
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Line detection is a very well known problem in perspective images and numerous meth-
ods have been proposed to solve it [6] [10] [8]. However, for central catadioptric im-
ages, the problem becomes more complex and delicate to solve. Indeed, as demonstrated
in [4] [9] [17], the image of any real straight line in 3D space is a conic in the catadiop-
tric plane. In this case, it is necessary to estimate, for each conic, five parameters with
methods such as those presented in [18]. However, these methods are generally computa-
tionally expensive and do not permit to obtain efficient results for real catadioptric images
in which only small portions of these conics are visible.
In the following parts of this paper, we present our motivations and contributions in Sec-
tion 2 followed by the model of a central catadioptric projection and the projection of a
real line in Section 3. The detection algorithm is described in Section 4. Section 5 is ded-
icated to the experimental results with a brief discussion. Finally, we conclude in Section
6 with some perspectives.

2 Motivations and Contributions

Line detection is a very important problem in catadioptric imagery since it allows to per-
form higher level treatments such as localization [16] or 3D reconstruction [14] [11].
In [11], Fiala and Basu propose an algorithm based on an adaptation of the Hough trans-
form which allows to detect horizontal real lines in the case of a spherical image (no single
viewpoint). Every horizontal line is characterized by a fall-line corresponding to the line
passing through the intersection of the vertical axis (optical axis of the camera) with the
plane which contains the horizontal line and provides the minimum angle with the verti-
cal axis. Thus, for each point in the image, a set of fall-lines is defined. The panoramic
Hough space is then bi-dimensional. A Look-up table is finally used in order to speed up
the treatment and a panoramic stereo reconstruction is proposed as an application. In [4],
Barreto and Araujo propose a method which allows the detection of any real straight lines
in paracatadioptric images (parabolic mirror with orthographic camera). The authors pro-
pose to perform the detection directly in the image and to compare different methods of
parameter estimation [18]. They also present an algorithm which ensures that detected
conics effectively correspond to real 3D lines. In this way, they integrate a new constraint
based on the circular and conjugate points of the conic. The estimation of the parameters
is then finally solved by a spectral analysis of a matrix which minimizes the algebraic
distance between the data points and the conic curve. This approach provides an efficient
and accurate algorithm. However, only paracatadioptric images can be treated with this
approach and the problem of conic estimation may become a problem of circle detection,
since the paracatadioptric images of real lines are arcs of circles if the camera aspect ratio
is unitary and there is no skew [9]. Moreover, the results on real images are obtained after
a manual selection of two points for each conic.

We propose to work on the sphere associated to the sensor and not directly on the
image. As demonstrated in [4] and [9], a 3D straight line is first projected into a great
circle on the equivalent sphere. This great circle has the same center and the same radius
as the sphere. We then propose to realize the detection of these great circles, and con-
sequently of the corresponding lines directly in the domain of the sphere with a simple
adaptation of the Hough transform. However, the transformation on the sphere requires



to know the intrinsic parameters of the sensor. This is why some authors argue that the
adaptation of treatments for central catadioptric images is not necessary since it is always
possible to compute the equivalent perspective images [11]. However, line detection re-
quires a preprocessing of the perspective image in order to extract the edges. To apply
classical perspective operators, it is necessary to correct the discrete deformations by an
intensity interpolation and a resampling of the perspective image. However, this approach
is computationally expensive and the interpolation may yield false information. For these
reasons, we adopt the point of view presented in [7] which consists in adapting treatments
to the catadioptric images. The authors propose in their paper some operators adapted to
the central catadioptric images by performing the treatments in the domain of the sphere.
In this way, the contribution is to propose the possibility to perform a sequence of treat-
ments (preprocessing, feature detection and high-level treatments such as localization,
reconstruction, . . . ) in a unified domain (the equivalent sphere). From these points of
view, it appears interesting to perform the detection on the sphere. Of course, it is neces-
sary to calibrate and we also propose to directly estimate the intrinsic parameters with a
single algorithm for the whole set of central mirrors, which is also an advantage.

3 Central Catadioptric Projection Model and
Calibration

In this part, we provide the central catadioptric projection model that we adopt in or-
der to explain and discuss our choices. For interested readers, we suggest the following
references for further details and explanations [3] [9].

A catadioptric vision system is the association of a reflected mirror with a camera.
Whatever the shape of the mirror surface, it is desirable that the axis of revolution of
the mirror is in line with the optical axis of the camera. In [3], a succinct review of
the different sensors with the equations of the different shapes of mirrors are presented.
Schematically, the projection of a 3D real point is performed in two steps. The first one
deals with the projection of 3D pointPr into pointPm on the surface of the mirror. The
second step is the reflection ofPm in a pointPi in the image. Among the developed mod-
els which provide the mapping function between pointPr and pointPi , we choose more
particularly the model based on the equivalent sphere [9]. In this model, the mapping
function is equivalent to a projection from pointPr onto the sphere, followed by a projec-
tion from a point on the sphere axis to the image plane. The center of the sphere is equal
to the mirror focus and its radius is function of the latus rectum of the mirror (also equal
to 4h). The position of the center of projection in the second projection depends on the
shape and the dimensions of the mirror (Figure 1).

In figure 1, 4h is equal to the latus rectum of the mirror andxs, ys and zs are the
coordinates of 3D pointPr = (xr ,yr ,zr) projected on the sphere and equal to :

xs = γxr

ys = γyr

zs = γzr

(1)

The equation of the sphere isx2
s +y2
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Figure 1: Illustration of the theorem of equivalence for the paracatadioptric case.

The coordinates of pointPi on the image plane are then obtained from a perspective
projection ofPs and the parameters of the mirror (ξ ,ϕ) :
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z=−ϕ
(3)
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In the image frame, we finally obtain :
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In order to perform the calibration with the previously described model, we place the
catadioptric system in an opened cube with a grid of points on each side (figure 2). In
this way, the points of the pattern are distributed over the whole catadioptric image. The
pattern contains 112 points and we calculate six extrinsic parameters (3 rotations and 3
translations) as well as the intrinsic parameters of the camera (ξ ,ϕ,αu,αv,u0,v0). The
estimation is performed by the minimization of the quadratic error between the selected
points and those computed by the model.

From the estimated parameters and the theorem of equivalence, it is easy to obtain
the coordinates of the points on the sphere from the coordinates in the image by inverting
equations 3 and by using the equation of the sphere.



Figure 2: Calibration system.

4 Central Catadioptric Lines Detection Algorithm

From the model previously developed, it is obvious that the projection of a 3D line on the
sphere is a great circle and the projection of this great circle on the catadioptric plane is a
conic in the general case [4] [9]. Detecting the projection of a real line in the catadioptric
image plane then consists in estimating the parameters of the conic. As mentioned in [18],
even if this problem is one of the simplest problems in computer vision, it is a relatively
difficult problem because of its nonlinear nature. Moreover, an automatic detection re-
quires the testing of the set of possible conics for each treated pixel and then increases
the complexity of the estimation. In this paper, we are interested by the detection of real
lines captured by any central catadioptric sensor. Figure 3 shows the image of a 3D line
with different positions and orientations captured by a hyperbolic sensor. In fact, a weak
displacement of the line can radically modify the nature of the conic. Our proposition
is then to perform the detection in the domain of the sphere where any 3D line captured
by any central catadioptric sensor corresponds to a great circle. This unified proposition
brings several advantages. First, since the great circles have the same center and the same
radius as the sphere, the space of research is reduced to a unique degree of freedom for
each treated pixel (figure 4). Second, the research in the domain of the sphere is a natural
following of the low-level operators proposed in [9] and permits to improve the computa-
tion time. Finally in [4], Barretto and Araujo impose constraints which ensure that each
detected conic is the image of a real line. In our approach, a great circle is necessarily
the image of a curve included in the plane which passes through the center of the sphere
and which contains the great circle. In real applications, this curve is practically always a
straight line.

A real 3D line becomes a great circle on the sphere which can be represented by its
normal characterized by the elevationθ and the azimuthρ (figure 4). The adapted Hough
space is then based on these angles. In this way, for each treated pixel, the set of great cir-
cles which passes through this pixel on the sphere can be represented by the lines which
pass through the center of the sphere and are perpendicular to the line represented by
the center of the sphere and the treated pixel. In order to illustrate the duality between
the space of the image and the Hough space, figure 5 presents both spaces with their re-
spective correspondences. A point in the Hough space represents a conic in the image
(respectively a great circle on the sphere), and a point in the image gives a curve in the
Hough space. The computation of the normal for each great circle is performed from the
scalar product between the line passing through the center of the sphere and pointPs on
the sphere, and the normal passing through the center of the sphere and pointPn placed
on the sphere. We finally obtain the expression of elevationθ in function of azimuthρ
and the coordinates of pixelPs on the sphere(xs,ys,zs) (equation 6). The algorithm then
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Figure 3: Examples of 3D line projections on a hyperbolic mirror: (a) 3D lines in space
with different positions and orientations, (b) Projection of the lines on the hyperbolic
mirror, (c) Projection on the image plane.

simply consists in sampling the interval of definition ofρ and in computing the corre-
spondant values ofθ in order to increment the accumulator.

θ = atan

(
−xscos(ρ)+yssin(ρ)

zs

)
(6)

We can remark that the complexity of this algorithm is very low and only depends on
the number of pixels and the number of values for angleρ. As in [11], a look-up table
could be used in order to avoid the computation ofθ . Since in the Hough transform,
the detection of the peaks in the accumulator is a delicate operation, we also propose to
perform the algorithm independently for each connected edge group. This improvement
enables to manage a low number of peaks at each iteration and to obtain the endpoints of
each detected segment.

5 Experimental Results

We first present the calibration results computed for both parabolic and hyperbolic mir-
rors (Table1). Each calibration has been realized from a dozen of images of the pattern
and we obtain for both mirrors a mean error equal to 1.2 pixel and a standard deviation
equal to 0.5 pixel. The NetVision objective (paracatadioptric sensor) is made of a convex
parabolic mirror and a concave spherical mirror which is used as a telecentric lens for an
orthographic projection.



Figure 4: Great circles computation for a point on the sphere.

Pixels/mm Optical center Mirror Error
αu αv u0 v0 ξ ϕ R m̄ σ

Parabolic -120.59 120.09 387.48 274.95 1.14 1.40 1 1.28 0.52
Hyperbolic -144.81 145.08 421.20 278.77 -0.91 -0.48 1 1 0.5

Table 1: Results of calibration for parabolic and hyperbolic mirrors.

In figure 6(a), we have simulated an environment with only horizontal and vertical
real lines projected on a paracatadioptric image. In this case, all the lines are perfectly
detected (figure 6(b)). We use this synthetic environment in order to test the sensitivity of
the detection according to the calibration parameters. We have performed some tests with
modified intrinsic parameters useful for the projection on the sphere. We first modifiedξ
andϕ with a tolerance of0.2 for 100images. The lines have always been detected with
an error equal to0.1 radian for the azimuth and the elevation of the horizontal lines and
0 radian for the azimuth and the elevation of the vertical lines. We have made100other
tests by adding a tolerance of five percent foru0 andv0. In 86 cases all the lines were
detected. The errors for the azimuth and the elevation are respectively equal to0.02 and
0.38radians for the horizontal lines and0.12and0 for the vertical lines. The center of the
image then appears more important than the mirror parameters. However, in catadioptric
sensor calibration, the estimation ofu0 andv0 is particularly accurate and we have always
found the same coordinates whatever the calibration method for both mirrors. The images
are all of size 768 by 576 and in our current implementation, the complete treatment takes
about three seconds with Matlab 5.3.

Finally, we propose some results on real parabolic (figure 6(c)(d)) and hyperbolic
(figure 6(e)) images. We found some over-detection due to the Hough accumulator but
an adaptation of the peak detection could surely improve the result. For the first real
catadioptric image (figure 6(c)), we obtain 30 detected lines and about 100 for images on
figures 6(d) and (e). We have only represented some detected lines for the real images for
convenience of visualization purpose.
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Figure 5: Duality of image space and Hough space - (a) Image with three points, (b) Cor-
responding Hough space with three curves, (c) Three central catadioptric lines detected
in the image, (d) Corresponding three points in Hough space.

6 Conclusion

In this paper, we propose an original algorithm for central catadioptric lines detection.
Contrary to previous methods, our approach consists in performing the detection in the
domain of the sphere where the real lines are transformed in great circles. These circles
have the same center and the same radius as the sphere. These characteristics allow to
fix constraints on the space search and then to obtain efficient results with a simple adap-
tation of the Hough transform. The proposed method is also a contribution in the sense
that it allows to detect any real 3D line in the image captured by any central catadioptric
sensor. We then also propose an efficient method to calibrate parameters needed for the
equivalent sphere model and for intrinsic parameters of the camera. So, our method for
lines detection has several advantages such as simplicity, efficiency and real time. All
these advantages are important in the context of mobile robot perception, where we often
need to calibrate the sensor and to extract features in real time. As future works, the cen-
tral line detection will be integrated in a system of 3D environment reconstruction for a
mobile robot.
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