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Abstract

Complex scenes such as underground stations and malls are composed of
static occlusion structures such as walls, entrances, columns, turnstiles, bar-
riers, etc. Unless this occlusion landscape is made explicit such structures
can defeat the process of tracking individuals through the scene. This paper
describes a method of generating the probability density functions (PDFs) for
the depth of the scene at each pixel from a training set of detected blobsi.e.
observations of detected moving people. As the results are necessarily noisy,
a regularization process is employed to recover the most self-consistent scene
depth structure. An occlusion reasoning framework is proposed to enable ob-
ject tracking methodologies to make effective use of the recovered depth.

1 Introduction

Accurately tracking moving objects within monitored scenes is crucial to a range of
surveillance tasks. By far the most common approach to monitoring in typical CCTV
imagery usespixel differencingin static scenes[8],blob analysisto extract observations
of moving objects, andtrajectory trackingto establish the temporal history of individual
scene events. The most significant challenge to this otherwise successful approach is the
frequent problem of occlusion. Complex scenes such as underground stations and malls
are composed of static occlusion structures such as walls, entrances, columns, turnstiles,
barriers,etc. These structures inducepartial occlusionwhich significantly distorts the ex-
pected position and appearance of tracked object, orfull occlusionfor different lengths of
time during which the object completely disappears (and need not necessarily reappear).

This paper describes a method of establishing the depth of the scene structure by gen-
erating the depth probability density functions (PDFs) at each pixel from a training set
of detected blobsi.e. observations of detected moving people. The connected region of
pixels associated with each observation of a person occludes some static scene element
such as a wall whose depth is unknown but required. Such an observation constrains the
occluded structure to lie at some distance beyond the observation. Thus, assuming that
the training set of observed people explore all the navigable space in the scene, the union
of their 3D trajectories will approximate to the depth structure of the scene. In particular,
the occlusion surfaces will appear as depth discontinuities. After regularisation, the depth
map will support reasoning about static occlusions. As an object proceeds through the
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Figure 1: Tracking Architecture

scene, inter-frame correspondence - which typically involves a spatio-chromatic compar-
ison of observation pixels with anappearance model- becomes problematic where there
has been significant occlusion of the observation. The depthmap allows the visibility of
the object to be predicted and the accuracy of correspondence to be improved.

Review of Object Tracking

The typical object tracking architecture is presented in Figure 1. Motion detectionpro-
cesses locateblobs (connected regions of moving pixels) to create a candidate list of
observations of the current active sceneobjects. Typically these blobs are recovered by
pixel differencing against a reference frame of the static scene, usually attributed with
their bounding box, orientation and centroid. TheTrackermodule is implemented using
a hypothesize, validate and updateapproach. Each active sceneObjecthas an associated
Trajectory Modelwhich describes the current position, velocity and possibly acceleration
of the object in - typically - image coordinates. In addition, eachObjecthas an associated
Appearance Modelwhich may be used to identify those blobs with the most similar shape
and/or chromatic structure. Such appearance models may simply describe the expected
width and height of the object’s bounding box, or record the pixel greylevels within the
last bounding box. Dynamic variants of these may also describe the rate of change of
these dimensions[4]. More sophisticated models may recordthe contour, binary pixel
shape, or spatio-chromatic structure.Activeor statistical appearance models attempt to
learn the allowable variation in object appearance[7]. In thehypothesisphase of the pro-
cedure, the object position and appearance is predicted from the trajectory and appearance
models. Each active scene object is thenvalidatedby locating an appropriate correspond-
ing observation from the list of candidate observations in the Data Association[1] step.
Greedy matchingis a common local approach to establishing correspondencesin which
the observation closest (using the Mahalanobis distance metric) to the predicted position
of an object is selected. In addition to incorporating appearance information, more so-
phisticatedglobal matching approaches attempt to enforce the uniqueness constraint by
considering all possible object-observation pairings[2]. Unmatched observations may be
used to hypothesise new objects appearing within the scene.In theupdatephase, the po-
sition and appearance of each corresponding observation isused to update the trajectory
and appearance model of validated scene objects. Typical update mechanisms include the
α −β and Kalman filter. Fundamentally, the tracker maintains thetemporal coherence of
object identities. Trajectory and appearance models maximise this temporal coherence.



Within tracking methodologies,occlusion analysisrefers to two largely distinct pro-
cesses. First, the occlusion of one moving object by other moving objects which causes
particular difficulties in continuing to establish the temporal identity. A common but by
no means satisfactory solution is to suspend both the correspondence and update phase of
the tracker until the objects are predicted to reappear. Occlusions arepredictedby check-
ing for pairwise overlap of bounding boxes at predicted positions. Suspending the update
phase for any length of time, however, is problematic since motions (particularly of peo-
ple) can rapidly evolve. A recent simple but effective approach is to track the boundaries
of bounding boxes separately which results in at least some updating evidence recovered
for a substantial proportion of the occlusion event[9]. Another recent approach is to match
the appearance model to partially obscured observations using depth to control the order
in which appearance models are matched[7].

The second type of occlusion analysis involves the interaction between moving ob-
jects and static occluding structures with in the scene suchas walls, entrances, columns,
turnstiles, barriersetc or the image boundary itself. Recently Senior[7] automatically
identified anocclusion mapdefined as pixels modelled as part of the reference image
but which were never occluded. Of course, occluding surfaces can be also be occluded
by moving objects. Using bounding boxes, Ellis and Xu manually identified long-term,
short-termandborder occlusions, and employed a Bayesian network to infer about the
status of unmatched blobs as they interacted with these occlusion structures. However,
the most effective occlusion representation is in fact a depth map. Using a similar phi-
losophy to that proposed in this paper, Schödl and Essa used detected moving objects to
infer the relative depth structure[6]. Since these blobs lacked any depth assignment, they
were forced to employ an extremely time-consuming search process based on minimum
description length to partition the image into relatively few depth planes. No specific
mechanism was proposed to make use of this depth representation.

2 Constructing Depth Probability Density Functions

Complex scenes such as underground stations and malls are composed of static occlusion
structures such as walls, entrances, columns, turnstiles,barriers,etc. Unless this occlusion
landscape is made explicit such structures can defeat the process of tracking individuals
through the scene. This section describes a method of generating the probability density
functions (PDFs) of depth at each pixel location from a training set of detected blobsi.e.
observations of detected moving people whose depth from thecamera is known.

The connected region of pixels associated with each observation of a person occludes
some scene structure such as a wall whose depth is unknown butrequired. Such an obser-
vation constrains the occluded structure to lie at some distance beyond the observation.
Thus, assuming that the training set of observed people explore all the navigable space in
the scene, the union of their 3D trajectories will approximate to the depth structure of the
scene. In particular, the occlusion surfaces will appear asdepth discontinuities.

2.1 Defining a depth measure

Theground planerelates the depth of a person to the projected image positionof his/her
feet. Thus assuming a point belongs to the ground plane, its row position correlates with



depth from the camera. Rather than relying on performing thenecessary calibration, a
shifted version of the row position is used as a non-linear proxy D for this depth.

The projected pixel heighth of a person in anH ×W image plane is a function of
the vertical position of the person in the imagei.e. distant people standing on the ground
plane are both higher up the image and smaller than nearby objects. For typical camera
installations, this relationship is practically linear[5] i.e.

h = α(ib− ih) or h =
α

1−α
(it − ih) where ib = it +h (1)

where ib - the position of the feet (or alternativelyit the top of the person’s head) - is
related to theheight expansion rateα and horizonih. These latter constants must be
manually (or automatically[5]) learnt from observations of people events. Assuming that a
person’s head is unoccluded in typical scenes, it is possible to estimate the image location
of the feet of an average personib from the head using equation 1.

The origin of the depth axisD is defined by the row positioni0 of the feet of an
average-sized person whose head is located just below the bottom edge of the image.
ThusD which increases asi0− ib increases (or alternativelyi0− it) can be defined as

Db(ib) =
H −α ih
1−α

− ib or Dt(it) =
H − it
1−α

(2)

The most distant object would be located at the horizonih corresponding to adepth
Dmax = (H − ih)/(1−α). Points above the horizon are assumed to lie at this maximum
depth.

2.2 Recovering the pixels depth PDFs

A priori, the depthD of any pixelφ at row i in the image plane is assumed to belong to
a uniform density function between the limits[0,min(Db(i),Dmax)] i.e. it cannot lie at a
distanceDb(i) deeper than the ground floor element that projects to that pixel. We can use
observations of moving people (i.e. blobs) to eliminate depths closer than the observed
object. All pixels belonging to a single moving person can beassigned a proxy distance
Dt(it) given by the topmost row location of the person’s head. For each pixel φ we
maintain a depth histogramzφ (D) in the range[0,min(Db(i),Dmax)] which we increment
at the depth associated with any blob which contains the pixel. From this histogram we
generate a PDFΠφ (D) by accumulating over the training set and normalising as follows

Πφ (D) =

{

1
Aφ

∑D
d=0

{

zφ (d)−δ
}

if D < min(Db(i),Dmax),

0 else.
(3)

Aφ = ∑
d=0,min(Db(i),Dmax)

{

zφ (d)−δ
}

(4)

Typically these PDFs exhibit a plateau beyond the deepest occluding observation. The
subtraction of a small constantδ biases the result towards the closest viable depth. Equa-
tion 4 generates an activity map for the scene. Figure 2(b) illustrates the activity recovered
from 15,000 frames of theUndergroundscene in Figure 2(a). Figures 2(c) to (h) present
a set of such PDFs for a number of positions in the original underground scene in Figure
2(a). An initial depth fieldZφ = argmaxD Πφ (D) is shown in Figure 2(a). While noisy,
the depths and occlusion edges are nonetheless evident.



(a) Underground Scene (b) Activity Map
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Figure 2: Initial Depth Map and Occlusion Structure



3 Regularization of Depth

The depth probability density functions for each pixel are noisy for a number of reasons.
First the paths taken by individuals do not necessarily visit all the available ground plane.
Second, fragmentation and merging of detected regions generates erroneous depth esti-
mates. For this reason it is necessary to regularize the depth fields i.e. spatially smooth
the depth field while preserving the depth discontinuities.One method is to cast the reg-
ularization as an optimization problem which, on minimization, generates the optimal
assignment of depth labels to all pixels in the image.

3.1 Defining the Optimization Functional

In the following functional, each pixelφ in an imageI has a labelθφ drawn from the
set of integer depthsΛ = {0,Dmax}. The goal is to recover the most probable depth label
given the pixel’s PDF and contextual information. Each possible label assignmentθφ = λ
has an associated probabilityp(θφ = λ ) such that∑λ∈Λ p(θφ = λ ) = 1.

F
(

p(θφ = λ );∀{φ ,λ} ∈ I ×Λ
)

= ∑
φ∈I ,

∑
λ∈Λ

Πφ (λ ) p(θφ = λ ) (5)

+ β ∑
φ∈I ,

∑
λ∈Λ,

∑
φ ′∈Nφ ,

∑
λ ′∈Λ

C(θφ = λ ,θφ ′ = λ ′)p(θφ = λ )p(θφ ′ = λ ′)

− γ ∑
φ∈I

{

1− ∑
λ∈Λ

p(θφ = λ )
}2

whereNφ is the 4-connected pixel neighbourhood of a pixelφ . The first term of this
functional biases the functional towards solutions which select highΠφ (λ ) PDF values
i.e. faithful to the observation information. The second term isdesigned to favour mu-
tually consistent labelling of neighbouring pixels by returning high values for consistent
neighbouring labelsi.e. it tends to favour locally smooth interpretations. The finalpenalty
term imposes the requirement that a pixel’s label probabilities sum to one. The constants
β andγ encode the influence of the three information sources. Expanding this third term
and re-arranging, generates the following related quadratic

F ′
(

p(θφ = λ );∀{φ ,λ} ∈ I ×Λ
)

= ∑
φ∈I ,

∑
λ∈Λ

χ(θφ = λ )p(θφ = λ ) (6)

+ ∑
φ∈I ,

∑
λ∈Λ,

∑
φ ′∈N ′

φ ,
∑

λ ′∈Λ
Γ(θφ = λ ,θφ ′ = λ ′)p(θφ = λ )p(θφ ′ = λ ′)

whereN ′
φ = Nφ ∪{φ}, equations 5 and 6 are related asF(.) = F ′(.)+∑φ∈I , and

χ(θφ = λ ) = Πφ (λ )+2γ

Γ(θφ = λ ,θφ ′ = λ ′) =

{

βC(θφ = λ ,θφ ′ = λ ′) if φ 6= φ ′,
−γ else.

3.2 Recovering the Regularised Depth

Minimisation is achieved using aHopfield neural networkformulation[3] as described in
Section 3.4. The regularized depth fieldZ ′

φ is recovered as the most probable labeli.e.

Z ′
φ = argmaxλ∈Λ p(θφ = λ ) (7)



3.3 Compatibility of Neighbouring Depth Labels

The compatibilityC(θφ = λ ,θφ ′ = λ ′) measures the consistency between pixelφ having
depthλ and its neighbourφ ′ having depthλ ′. In general, to encourage locally smooth
interpretations, large incompatibility values should be generated for depth discontinuities
unlessthese pixels straddle an occluding boundary. Such occluding boundaries can be
signalled by discontinuities in the activity map of equation 4 - see Figure 2(b). Given the
gradient magnitudeE of the activity fieldA, compatibility (−1≤C≤ 1) is defined as

C(θφ = λ ,θφ ′ = λ ′) = 2exp

{

−
σE

σλ

|λ −λ ′|
(

σE +max(Eφ ,Eφ ′)
)

}

−1 (8)

whereσE andσλ are the standard deviations of the gradient magnitudeE and depth map.

3.4 Minimizing the Optimisation Functional

Quadratic equations of the form given in equation 9 may be minimized using aHopfield
neural network[3]. In our problem, each pixel-label pair{φ ,λ} may be viewed as a
neuron. On comparison with equation 6, an external input potential Ii for each neuron
may be derived fromχ(θφ = λ ) of equation 7. Each neuron is connected to other neurons
by an interconnection potentialΦi j given byΓ(θφ = λ ,θφ ′ = λ ′) of equation 7.

E = ∑
i

I iVi −
1
2 ∑

i
∑

j
Φi jViVj (9)

whereVi , the output potential of the neuron, is equivalent to the pixel-label probability
p(θφ = λ ). The dynamic update equation of the network is given by

dui

dt
=

1
C

[

Ii −
ui

R
+ ∑

j 6=i

Φi jVj

]

=
1
C

[

Ii −
ui

R
+ ∑

j 6=i

Φi j g(u j)

]

= Fi(u) (10)

where the internal stateui of a neuron is related to output potentialVi by the function
Vi = g(ui), andu = (u1, . . . ,uN). This non-linear function is often a sigmoidal function -
in this caseV = 0.5{1+exp(−κu)}−1 whereκ is the gain of the sigmoid. A 4th order
Runge-Kutta procedure is employed to iteratively and accurately solve equation 10.

3.5 Results

Two image sequences have been used to evaluate the methodology - theUnderground
(8000 frames) andAirport scene (3000 frames) shown in Figures 2(a) and 3(a) respec-
tively1. Both enjoy complex 3D structures, and despite being indoorscenes, both are
highly problematic containing illuminance of high dynamicrange and composed of highly
reflective surfaces. Figures 3(c) and (d) present the regularized depth of these scenes. The
steppeddepth of the ticket barriers in the Underground has become spatially coherent. In
both sequences, the ground plane has become much more evident. However both exhibit
regions where there has been insufficient observations (seethe activity maps) to resolve
the depth structure. In particular, the depth of furthest regions is determined by the deepest
observations. In addition, the clock signal appears as a nearby scene element.

1Some editing of presented images has been necessary for legal and security reasons



(a) Airport Scene (b) Airport Activity Map

(c) Regularised Depth: Underground (d) Regularised Depth:Airport

(e) Tracked Object (f) Occlusion Result

Figure 3: Building and using Scene Structure

No objective evaluation of the computed depths has yet been undertaken. Nonetheless the
accuracy and utility of the method can be illustrated by generating, for the tracked person
shown in Figure 3(e), theocclusion maskcorresponding to its first frame depth. Black and
dark grey colours refer to pixels whose depth is closer to thecamera than the person (and
white beyond). Black regions are pixels which incorrectly occlude the person (although
one of these regions is a ground plane shadow). Boxes have been drawn around white
regions which should have been identified as occluding. Despite these errors, the results
generated from the approximately 800 people in the 8000 frames are very promising.



4 Occlusion Analysis

Data association (which establishes correspondence between observations and tracked ob-
jects) typically involves pruning observations whose areais significantly smaller than the
expected area, and a chromatic (or spatio-chromatic) comparison of observation pixels
with anappearance modelmaintained as part of the objects’ representation. Such opera-
tions become problematic where there has been significant occlusion of the observation.

While there exists a number of approaches for modelling the appearance of tracked ob-
jects, it has been straightforward to embed our depth field within the the depth-dependent
bounding box approach of Rennoet al[5]. Here, for typical surveillance installations,
projected height is modelled as a linear function of the image row position of the point
of contact of a person with the ground plane - see equation 1. (The width of a person is
assumed to be some fixed proportion of their height). Thus, assuming that the head of
a person is never occluded, the unoccluded image-plane bounding box of any occluded
observation is derived solely from the image location! The primary attraction of their
method is the elimination of the need to temporally estimatethe bounds of the object’s
appearance. Nonetheless, the following methodology couldin principle be extended to
other approaches. Using the work presented in this paper, this bounding box representa-
tion can also be attributed with an estimate of its depth which can be directly related to
the depth field using the proxy depth measure defined in Section 2.1.

To illustrate the use of depth in the data association stage,we adapt the probabilis-
tic cross-correlation filter of Senior[7]. Within a bounding box Bψ for each objectψ,
a simple probabilistic appearance modelM(φ);φ ∈ Bψ is generated from the tempo-
rally smoothed chromatic signature at each pixel. A probability map PM

ψ defined over the
bounding boxBψ records the likelihood of a pixel belonging to the model.

For each observationω, the projected bounding boxBω is derived solely from its
image location[5]. A pixel maskOω whose size is given by the bounding boxBω ) is used
to predict occluded pixelsφ ∈Bω by comparing the depth estimateDω of the observation
with the depth mapZ ′

φ of the scene.
The first (and original[7]) term of the cross-correlation filter expressed in equation 11,

measures the log-likelihood of the greylevel structure in the current imageIt given the
appearance modelMt−1 over the predicted unoccluding pixels. The second term effec-
tively adds a log-likelihood prior probability for predicted occluding pixels. The pixel by
pixel comparison is performed on the aligned bounding boxesBω andBψ over a search
windowS of displacementsτ ∈ S to allow for error in predicted object position.

L(ω,ψ)= min
τ∈S







∑
φ∈Bψ∩Oω

[

(I t(φ)−M t−1(φ + τ))2

2σ2 + logPM
ψ (φ + τ)

]

+ ∑
φ∈Bψ∩Oω

logPO







(11)
The above formulation is presented to illustrate how easilythe depth map can be

incorporated into the data association stage of the tracking algorithm. Unfortunately no
quantitative evaluation results were currently availableat the time of writing.



5 Discussion

A method of generating the probability density functions (PDFs) of the likely depth of the
scene at each pixel is presented. This learning approach uses a training set of observations
of detected moving people, each of which constrains part of the occluded scene to lie at
some distance beyond the observation. Since the results tend to be noisy, a regularisation
process is required. Occlusion boundaries generate discontinuities in the activity map
which can be used to prevent the smoothing of depth over possible depth boundaries.

Having extracted the depth scene, we have illustrated in Section 4 how the depth map
can aid the inter-frame correspondence problem which is so highly sensitive to occlusion.
In addition, the approach can also be integrated intolayeredapproaches[7] for reason-
ing about dynamic occlusion between moving objects where depth clues order the data
association process.

Each iteration of minimisation process is computationallyburdensome, and typically
takes several hundred iterations to converge. However computational speed is not really
an issue as it is important to perform the accumulation of thepixel depth histograms until
the scene population has explored all the available space. While it is attractive to imagine
an online adaptive version, it is not clear what impact such avariant of the approach would
have on the convergence properties of the minimisation process.

References
[1] Y. Bar-Shalom and T. Fortmann.”Tracking and Data Association”. Mathematics

in Science and Engineering. Academic Press, 1988.
[2] T. Ellis and M. Xu. “Object Detection and Tracking in an Open and Dynamic

World”. In Second IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance, Hawaii, December 2001.

[3] J. Hopfield. “Neurons with Graded Responses have Collective Computation Prop-
erties like those of Two-State Neurons”.Proceedings of the National Academy of
Sciences, USA, 81:3088–3092, 1984.

[4] Justus H. Piater, Stephane Richetto, and James L. Crowley. “Event-based Activity
Analysis in Live Video using a Generic Object Tracker”. InThird IEEE Interna-
tional Workshop on Performance Evaluation of Tracking and Surveillance, pages
1–8, Copenhagen, June 1 2002.

[5] J. Renno, J. Orwell, and G.A. Jones. “Learning Surveillance Tracking Models for
the Self-Calibrated Ground Plane”. InBritish Machine Vision Conference, Cardiff,
UK, September 2002.

[6] A. Schodl and I. Essa. ”Depth Layers from Occlusions”. InProceedings of IEEE
Conference on Computer Vision and Pattern Recognition, volume 1, pages 639–644,
Kawai, Hawaii, December 2001.

[7] Andrew Senior. “Tracking People with Probabilistic Appearance Models”. InThird
IEEE International Workshop on Performance Evaluation of Tracking and Surveil-
lance, pages 48–55, Copenhagen, June 1 2002.

[8] C. Stauffer and W.E.L. Grimson. “Learning Patterns of Activity using Real-Time
Tracking”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):747–757, August 2000.

[9] M. Xu and T.J. Ellis. “Partial observation versus blind tracking through occlusion”’.
In British Machine Vision Conference, pages 777–786, Cardiff, September 2002.


