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Abstract

Complex scenes such as underground stations and malls remgosed of
static occlusion structures such as walls, entrancesgre@uturnstiles, bar-
riers, etc Unless this occlusion landscape is made explicit suclctsires
can defeat the process of tracking individuals through teme. This paper
describes a method of generating the probability densitgtfans (PDFs) for
the depth of the scene at each pixel from a training set ottedeblobs.e.
observations of detected moving people. As the resultseressarily noisy,
aregularization process is employed to recover the mdstenkistent scene
depth structure. An occlusion reasoning framework is psepdo enable ob-
ject tracking methodologies to make effective use of thevered depth.

1 Introduction

Accurately tracking moving objects within monitored sceng crucial to a range of
surveillance tasks. By far the most common approach to mng in typical CCTV
imagery usegixel differencingn static scenes[8hlob analysisto extract observations
of moving objects, anttajectory trackingto establish the temporal history of individual
scene events. The most significant challenge to this otkersticcessful approach is the
frequent problem of occlusion. Complex scenes such as gralerd stations and malls
are composed of static occlusion structures such as walisirees, columns, turnstiles,
barriersetc These structures indupartial occlusionwhich significantly distorts the ex-
pected position and appearance of tracked objedtillowcclusionfor different lengths of
time during which the object completely disappears (andl me¢t necessarily reappear).
This paper describes a method of establishing the deptleafdine structure by gen-
erating the depth probability density functions (PDFs)athepixel from a training set
of detected blobge. observations of detected moving people. The connectedneii
pixels associated with each observation of a person ocglsdee static scene element
such as a wall whose depth is unknown but required. Such amn@i®n constrains the
occluded structure to lie at some distance beyond the odsenv Thus, assuming that
the training set of observed people explore all the navegaphce in the scene, the union
of their 3D trajectories will approximate to the depth stwre of the scene. In particular,
the occlusion surfaces will appear as depth discontirsuiddter regularisation, the depth
map will support reasoning about static occlusions. As gaablproceeds through the
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Figure 1: Tracking Architecture

scene, inter-frame correspondence - which typically wesla spatio-chromatic compar-
ison of observation pixels with aappearance modelbecomes problematic where there
has been significant occlusion of the observation. The depih allows the visibility of
the object to be predicted and the accuracy of correspoederte improved.

Review of Object Tracking

The typical object tracking architecture is presented guFé 1. Motion detectiorpro-
cesses locatblobs (connected regions of moving pixels) to create a candidateof
observations of the current active scaigects Typically these blobs are recovered by
pixel differencing against a reference frame of the statene, usually attributed with
their bounding box, orientation and centroid. Thrackermodule is implemented using
ahypothesize, validate and updatpproach. Each active sce®bjecthas an associated
Trajectory Modewhich describes the current position, velocity and pogsibteleration
of the object in - typically - image coordinates. In additieachObjecthas an associated
Appearance Modethich may be used to identify those blobs with the most sinsitepe
and/or chromatic structure. Such appearance models ma}ysdascribe the expected
width and height of the object’'s bounding box, or record thelpgreylevels within the
last bounding box. Dynamic variants of these may also desdhe rate of change of
these dimensions[4]. More sophisticated models may rett@dontour, binary pixel
shape, or spatio-chromatic structuréctive or statistical appearance models attempt to
learn the allowable variation in object appearance[7]hiehypothesiphase of the pro-
cedure, the object position and appearance is predictattfre trajectory and appearance
models. Each active scene object is thalidatedby locating an appropriate correspond-
ing observation from the list of candidate observationshmData Associatiofl] step.
Greedy matchings a common local approach to establishing correspondencgkich
the observation closest (using the Mahalanobis distan¢ean® the predicted position
of an object is selected. In addition to incorporating ajpgeee information, more so-
phisticatedglobal matching approaches attempt to enforce the uniquenestga@iohdy
considering all possible object-observation pairings[2imatched observations may be
used to hypothesise new objects appearing within the s¢eriee updatephase, the po-
sition and appearance of each corresponding observatigsedto update the trajectory
and appearance model of validated scene objects. Typidatemechanisms include the
a — 3 and Kalman filter. Fundamentally, the tracker maintaingéineporal coherence of
object identities. Trajectory and appearance models miagithis temporal coherence.



Within tracking methodologiesicclusion analysisefers to two largely distinct pro-
cesses. First, the occlusion of one moving object by othariimgaobjects which causes
particular difficulties in continuing to establish the teon@l identity. A common but by
no means satisfactory solution is to suspend both the gonelence and update phase of
the tracker until the objects are predicted to reappearuSions argredictedby check-
ing for pairwise overlap of bounding boxes at predicted fmss. Suspending the update
phase for any length of time, however, is problematic sinoéians (particularly of peo-
ple) can rapidly evolve. A recent simple but effective agmtois to track the boundaries
of bounding boxes separately which results in at least sqydating evidence recovered
for a substantial proportion of the occlusion event[9]. K&y recent approach is to match
the appearance model to partially obscured observatidng depth to control the order
in which appearance models are matched[7].

The second type of occlusion analysis involves the interadietween moving ob-
jects and static occluding structures with in the scene agahalls, entrances, columns,
turnstiles, barriergtc or the image boundary itself. Recently Senior[7] autonasitic
identified anocclusion mapdefined as pixels modelled as part of the reference image
but which were never occluded. Of course, occluding susfae® be also be occluded
by moving objects. Using bounding boxes, Ellis and Xu malyudEntified long-term
short-termandborder occlusions, and employed a Bayesian network to infer abbwut t
status of unmatched blobs as they interacted with thes@%ioal structures. However,
the most effective occlusion representation is in fact atdepap. Using a similar phi-
losophy to that proposed in this paper, 8dhand Essa used detected moving objects to
infer the relative depth structure[6]. Since these blobkdd any depth assignment, they
were forced to employ an extremely time-consuming searcbgss based on minimum
description length to partition the image into relativegwf depth planes. No specific
mechanism was proposed to make use of this depth repréeantat

2 Constructing Depth Probability Density Functions

Complex scenes such as underground stations and mallsrapmsed of static occlusion
structures such as walls, entrances, columns, turndiéedersetc Unless this occlusion
landscape is made explicit such structures can defeat toegs of tracking individuals
through the scene. This section describes a method of ganetlae probability density
functions (PDFs) of depth at each pixel location from a irairset of detected blokise.
observations of detected moving people whose depth frorogheera is known.

The connected region of pixels associated with each oltsemvaf a person occludes
some scene structure such as a wall whose depth is unknoweduited. Such an obser-
vation constrains the occluded structure to lie at someiitst beyond the observation.
Thus, assuming that the training set of observed peopl@exgll the navigable space in
the scene, the union of their 3D trajectories will approxienta the depth structure of the
scene. In particular, the occlusion surfaces will appeaeash discontinuities.

2.1 Defining a depth measure

Theground planerelates the depth of a person to the projected image posifibis/her
feet. Thus assuming a point belongs to the ground planepitgposition correlates with



depth from the camera. Rather than relying on performingngessary calibration, a
shifted version of the row position is used as a non-lineexyb for this depth.

The projected pixel height of a person in aiH x W image plane is a function of
the vertical position of the person in the image distant people standing on the ground
plane are both higher up the image and smaller than nearlegtsbjFor typical camera
installations, this relationship is practically linedrj%.

h=a(i,—ip) or (it—ip) where ip=it+h (1)

1-a
whereiy, - the position of the feet (or alternatively the top of the person’s head) - is
related to theheight expansion rater and horizoni,. These latter constants must be
manually (or automatically[5]) learnt from observatiorfipeople events. Assuming that a
person’s head is unoccluded in typical scenes, it is pasgistimate the image location
of the feet of an average persirfrom the head using equation 1.

The origin of the depth axi® is defined by the row positioi of the feet of an
average-sized person whose head is located just below thenrbedge of the image.
ThusD which increases ag — iy, increases (or alternatively — i;) can be defined as

H—it

H—aip i
1-a

Do (ib) = 75—

or Dt(lt) =

(2)

The most distant object would be located at the horigpoorresponding to aepth
Dmax= (H —in)/(1—a). Points above the horizon are assumed to lie at this maximum
depth.

2.2 Recovering the pixels depth PDFs

A priori, the depthD of any pixelg at rowi in the image plane is assumed to belong to
a uniform density function between the lim{& min(Dy(i), Dmax)] i.€. it cannot lie at a
distanceDy (i) deeper than the ground floor element that projects to that.pi¥e can use
observations of moving peopled. blobs) to eliminate depths closer than the observed
object. All pixels belonging to a single moving person carabsigned a proxy distance
D¢(it) given by the topmost row location of the person’s head. Faohgaxel ¢ we
maintain a depth histogramg(D) in the rangg0, min(Dy(i), Dmax)] which we increment

at the depth associated with any blob which contains thd.pb®®m this histogram we
generate a PDH (D) by accumulating over the training set and normalising devial

Me(D) = {cf;—ﬁio{%(d)—é} :Is:minmb(i),omax), -
Po = > o {z(d)-8} @)

d=0,min(Dy(i),Dmax)

Typically these PDFs exhibit a plateau beyond the deepettidiag observation. The
subtraction of a small constadtbiases the result towards the closest viable depth. Equa-
tion 4 generates an activity map for the scene. Figure A(tstibtes the activity recovered
from 15,000 frames of thelndergroundscene in Figure 2(a). Figures 2(c) to (h) present
a set of such PDFs for a number of positions in the originakugund scene in Figure
2(a). An initial depth fieldZy, = argmax, My(D) is shown in Figure 2(a). While noisy,
the depths and occlusion edges are nonetheless evident.
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Figure 2: Initial Depth Map and Occlusion Structure



3 Regularization of Depth

The depth probability density functions for each pixel anésy for a number of reasons.
First the paths taken by individuals do not necessarily gisthe available ground plane.
Second, fragmentation and merging of detected regionsrageseerroneous depth esti-
mates. For this reason it is necessary to regularize thé diepdsi.e. spatially smooth
the depth field while preserving the depth discontinuiti®@ae method is to cast the reg-
ularization as an optimization problem which, on minimiaat generates the optimal
assignment of depth labels to all pixels in the image.

3.1 Defining the Optimization Functional

In the following functional, each pixep in an image.# has a labeB, drawn from the
set of integer depth& = {0, Dmax}. The goal is to recover the most probable depth label
given the pixel's PDF and contextual information. Each fiedabel assignmer@l, = A

has an associated probabilipy6, = A) such thaty A p(6p = A) = 1.

F(pBy=A)H{@A e s xN) = 5 3 My(A) p(8p=12) 5)
pES, AeN

+ BS 3 S Y Clr=2.6y=21)p(Bp=2)p(6y =A")
QeI AEN, ety ATeN

— v 3 {1- 3 p6=1)°
pcs Xen
where .1, is the 4-connected pixel neighbourhood of a pigel The first term of this
functional biases the functional towards solutions whielest highlM,(A) PDF values
i.e. faithful to the observation information. The second terndésigned to favour mu-
tually consistent labelling of neighbouring pixels by metng high values for consistent
neighbouring labelse. it tends to favour locally smooth interpretations. The fipahalty
term imposes the requirement that a pixel’s label prohtédslisum to one. The constants
B andy encode the influence of the three information sources. Hipgrthis third term
and re-arranging, generates the following related quiadrat
F'(pBp=A)v{oA}e s xA)= 5 S X(6,=2)p(6p=2)  (6)
QpeS, AeN
+ Z Z Z Z F(Bp=A,0y =A")p(6y=A)p(By =A")
QeI , AeN, (p’e/V(p’. ATeN

where.#; = 4, U{¢@}, equations 5 and 6 are relatedr(s) = F'(.) + ¥ pc », and
X(Bp=A) = MNg(A)+2y
_ _any — [ BC(By=A.8y=A") if o#¢,
F(Bp=2,0y=2A") = { = oloe
3.2 Recovering the Regularised Depth

Minimisation is achieved usingtdopfield neural networkormulation[3] as described in
Section 3.4. The regularized depth fi@g is recovered as the most probable laibel

Z,=argmax s p(6p=A) )



3.3 Compatibility of Neighbouring Depth Labels

The compatibilityC(6, = A, 8, = A’) measures the consistency between pixaaving
depthA and its neighboury’ having depttA’. In general, to encourage locally smooth
interpretations, large incompatibility values should leagrated for depth discontinuities
unlessthese pixels straddle an occluding boundary. Such ocdudaundaries can be
signalled by discontinuities in the activity map of equatib- see Figure 2(b). Given the
gradient magnitud& of the activity fieldA, compatibility 1 < C < 1) is defined as

Ok A=A
C(Op=A,0y =A") =2exp{ —— 1 8
( ¢ e ) exp{ O) (OE “ax(E(Ih E(ﬂ )> ( )

whereog andag, are the standard deviations of the gradient magnitudad depth map.

3.4 Minimizing the Optimisation Functional

Quadratic equations of the form given in equation 9 may bamiaed using eHopfield
neural networf3]. In our problem, each pixel-label pa{rp,A} may be viewed as a
neuron. On comparison with equation 6, an external inpueni@l |; for each neuron
may be derived fronx (6, = A) of equation 7. Each neuron is connected to other neurons
by an interconnection potentidl;; given byl (6, = A,8, = A’) of equation 7.

E:IZHVi—%IZ;(DijViVj ©)

whereV, the output potential of the neuron, is equivalent to theslpiabel probability
p(6, = A). The dynamic update equation of the network is given by

duy 1|
a—a["—w;w

where the internal state of a neuron is related to output potentialby the function
Vi = g(ui), andu = (uy,...,uy). This non-linear function is often a sigmoidal function -
in this caseV = 0.5{1+exp(—ku)} ' wherek is the gain of the sigmoid. A order
Runge-Kutta procedure is employed to iteratively and aately solve equation 10.

- é lli - % +J;¢ijg(uj)] =R (109

3.5 Results

Two image sequences have been used to evaluate the metiypddtoe Underground
(8000 frames) andirport scene (3000 frames) shown in Figures 2(a) and 3(a) respec-
tively’. Both enjoy complex 3D structures, and despite being indoenes, both are
highly problematic containing illuminance of high dynamange and composed of highly
reflective surfaces. Figures 3(c) and (d) present the regathdepth of these scenes. The
steppediepth of the ticket barriers in the Underground has becoragadly coherent. In
both sequences, the ground plane has become much moreteVWidarever both exhibit
regions where there has been insufficient observationstiisegctivity maps) to resolve
the depth structure. In particular, the depth of furthegines is determined by the deepest
observations. In addition, the clock signal appears as dpaaene element.

1Some editing of presented images has been necessary for tegseeurity reasons
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Figure 3: Building and using Scene Structure

No objective evaluation of the computed depths has yet bedartaken. Nonetheless the
accuracy and utility of the method can be illustrated by getireg, for the tracked person
shown in Figure 3(e), thecclusion maskorresponding to its first frame depth. Black and
dark grey colours refer to pixels whose depth is closer t@émera than the person (and
white beyond). Black regions are pixels which incorrecttglade the person (although
one of these regions is a ground plane shadow). Boxes havedoaen around white
regions which should have been identified as occluding. Detpese errors, the results
generated from the approximately 800 people in the 8000dsaane very promising.



4 Occlusion Analysis

Data association (which establishes correspondence bewiEservations and tracked ob-
jects) typically involves pruning observations whose asesgnificantly smaller than the
expected area, and a chromatic (or spatio-chromatic) cosgpaof observation pixels
with anappearance modehaintained as part of the objects’ representation. Sucheepe
tions become problematic where there has been significahision of the observation.

While there exists a number of approaches for modelling tpeaance of tracked ob-
jects, it has been straightforward to embed our depth fietkimthe the depth-dependent
bounding box approach of Renm al[5]. Here, for typical surveillance installations,
projected height is modelled as a linear function of the ienegyv position of the point
of contact of a person with the ground plane - see equatioitlie fidth of a person is
assumed to be some fixed proportion of their height). Thusyragg that the head of
a person is never occluded, the unoccluded image-planedbaubox of any occluded
observation is derived solely from the image location! Thienpry attraction of their
method is the elimination of the need to temporally estinthéebounds of the object’s
appearance. Nonetheless, the following methodology ciouftinciple be extended to
other approaches. Using the work presented in this papshdunding box representa-
tion can also be attributed with an estimate of its depth tvicien be directly related to
the depth field using the proxy depth measure defined in Se2tio

To illustrate the use of depth in the data association stageadapt the probabilis-
tic cross-correlation filter of Senior[7]. Within a boundibox %, for each objecty,

a simple probabilistic appearance modi&{); ¢ € By, is generated from the tempo-
rally smoothed chromatic signature at each pixel. A prdiglhap P&," defined over the
bounding box#%,, records the likelihood of a pixel belonging to the model.

For each observatiow, the projected bounding ba%,, is derived solely from its
image location[5]. A pixel maskK, whose size is given by the bounding b@,) is used
to predict occluded pixelg € A, by comparing the depth estimddg, of the observation
with the depth maiZ,; of the scene.

The first (and original[7]) term of the cross-correlatiotefilexpressed in equation 11,
measures the log-likelihood of the greylevel structurehia ¢turrent imagéy given the
appearance mod®l;_; over the predicted unoccluding pixels. The second ternteffe
tively adds a log-likelihood prior probability for predexd occluding pixels. The pixel by
pixel comparison is performed on the aligned bounding bezgsand %, over a search
window .7 of displacements € . to allow for error in predicted object position.

+ z logPo
(péﬂwﬁﬁw
(11)
The above formulation is presented to illustrate how eatsie/ depth map can be
incorporated into the data association stage of the trgckigorithm. Unfortunately no
guantitative evaluation results were currently availatlthe time of writing.
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5 Discussion

A method of generating the probability density functionBfg) of the likely depth of the
scene at each pixel is presented. This learning approashausgning set of observations
of detected moving people, each of which constrains pati@btcluded scene to lie at
some distance beyond the observation. Since the resuitsddie noisy, a regularisation
process is required. Occlusion boundaries generate disadies in the activity map
which can be used to prevent the smoothing of depth overlgessepth boundaries.

Having extracted the depth scene, we have illustrated itidde¢ how the depth map
can aid the inter-frame correspondence problem which isgddyhsensitive to occlusion.
In addition, the approach can also be integrated iayeredapproaches[7] for reason-
ing about dynamic occlusion between moving objects whepghdelues order the data
association process.

Each iteration of minimisation process is computationbllydensome, and typically
takes several hundred iterations to converge. However atatipnal speed is not really
an issue as it is important to perform the accumulation optkel depth histograms until
the scene population has explored all the available spac#ée Wis attractive to imagine
an online adaptive version, it is not clear what impact sugdrent of the approach would
have on the convergence properties of the minimisationgac
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