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Abstract

Linear discriminant analysis (LDA) has been an active topic of research
during the last century. However, the existing algorithms have several lim-
itations when applied to visual data. LDA is only optimal for gaussian dis-
tributed classes with equal covariance matrices and just classes-1 features
can be extracted. On the other hand, LDA does not scale well to high di-
mensional data (over-fitting) and it does not necessarily minimize the clas-
sification error. In this paper, we introduce Oriented Discriminant Analysis
(ODA), a LDA extension which can overcome these drawbacks. Three main
novelties are proposed.:

e An optimal dimensionality reduction which maximizes the Kullback-
Liebler divergence between classes is proposed. This allows us to model
class covariances and to extract more than classes-1 features.

e Several covariance approximations are introduced to improve classifi-
cation in the small sample case.

e A linear time iterative majorization method is introduced in order to
find a local optimal solution.

Several synthetic and real experiments on face recognition are reported .

1 Introduction

Canonical Correlation Analysis (CCA) , Independent Component Analysis (ICA), Lin-
ear Discriminant Analysis (LDA), Principal Component Analysis (PCA), ... are some
examples of subspace methods (SM) useful for classification, dimensionality reduction
and data modeling. These methods have been actively researched by the statistics, neural
networks, machine learning and vision communities during the last century. In partic-
ular, SM have been very successful in computer vision to solve problems like structure
from motion [16] or detection/recognition [17]. SM can be especially useful when avail-
able data increases in features/samples, since there is a need for dimensionality reduction
while preserving relevant attributes of the data®. Another benefit of many subspace meth-
ods is that they can be computed as an eigenvalue problem, for which there are efficient
numerical packages. A drawback of SM is its linear assumption, however kernel methods
and latent variable models have made recover the interest.

I"This work has been partially supported by National Business Center of the Department of the Interior under
a subcontract from SRI International, U.S. Department of Defense contract N41756-03-C4024, NIMH Grant
RO1 MHS51435 and DARPA HumanID program under ONR contract N00014-00-1-0915.

2 Also many times it is helpful to find a new coordinate system (e.g. Fourier transform).
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Figure 1: Face classification by projecting onto a low dimensional space.

In particular, LDA has been extensively used for classification problems such as
speech recognition, face recognition/tracking [19] or multimedia information retrieval
[3,2,5,7, 20, 21, 13]. Among several classification methods (e.g. Support Vector Ma-
chines, decision trees, ...), LDA remains a powerful preliminary tool for dimensionality
reduction to preserve discriminative features, avoid the “curse of dimensionality” and un-
derstanding better the data (e.g visualization). This is especially important in the context
of computer vision, where usually high dimensional data is present and a preliminary
dimensionality reduction is often necessary.

However, there are several issues which remain unsolved when applying LDA to high
dimensional data (e.g. images). LDA is only optimal in the case that all the classes
have a gaussian distribution with equal covariance matrices, due to this restriction, the
maximum number of features that can be extracted is just the number of classes —1.
Another problem of LDA is the small size problem [20, 21]. In the case that we have
more “dimensions”> than data samples, LDA overfits the data due to bad estimates of
the covariance matrices and PCA techniques usually outperform LDA [13]. Also, in
this case the computational and storage requirements of traditional algorithms do not
scale well. In this paper we introduce Oriented Discriminant Analysis (ODA), a new
low dimensional discriminatory technique which is able to solve previous LDA problems.
Figure 1 illustrates the main purpose of this paper®.

2 Linear Discriminant Analysis

The aim of discriminant analysis methods is to project the data from several classes into
a subspace of lower dimension, so that the classes are as compact and they are as far as
possible from each other. In particular, LDA remains a powerful tool for dimensionality
while extracting features which preserve class separability.

Several optimization criteria for LDA are possible and most of them are based on

3In this case the true dimensionality of the data is the number of samples.

4Bold capital letters denote a matrix D, bold lower-case letters a column vector d. d; represents the j
column of the matrix D. All non-bold letters will represent variables of scalar nature. diag is an operator which
transforms a vector to a diagonal matrix. I € R**! is a vector of ones. I € R¥*X is the identity matrix and
e; is the i columun. tr(A) = 3;a; is the trace of the matrix A. ||A||[r = tr(ATA) = t7(AAT) designates the
Frobenious norm of a matrix. N;(x; u,Z) indicates a d-dimensional gaussian on the variable x with mean uand
covariance 2.



relations between the following covariance matrices, which can be conveniently expressed
in matrix form as:
1 1 1
S, =——bppP,D" S,=—DP,D” S, = ——DP;D” )
n—1 n—1 n—1
where D € R9*" is the data matrix. P; are projection matrices (i.e P! = P; and P? = P;)
with the following expressions:

1
P =1-11,17 P,=I-G(G"G)'G" P;=G(G'G)'G" - ;1,11(.(;7 2)

where G € i€ is an dummy indicator matrix such that ¥ ;¢;; = 1, g;; € {0,1} and
gij is 1 if d; belongs to class j. ¢ denotes the number of classes and n the number of
samples. S, is the between covariance matrix and represents the average of the distances
between the mean of the classes. S,, represents the within covariance matrix and it is
a measure of the average compactness of each class. Finally S; is the total covariance
matrix. With the matrix expressions it is straightforward to show that S; = S,, +S;. The
upper bounds on the ranks of the matrices are c — 1, n—c, n— 1 for S;,S,,, S, respectively.

A Rayleigh quotient like are among the most popular LDA optimization criteria [7],

some are: J; (B) = }gﬁg;g} Jo(B) = tr((B"S,B)'BTS,B) J1(B) = Eg;g;gg , where §; =
{Sp,Sp,S:} and Sy = {S,,,S;,S, }. Although other constrained optimization formulations
are possible [4, 7]. A closed form solution to previous minimization problems is given by
a generalized eigenvalue problem S| B = S;BA. The generalized eigenvalue problem can
be solved as a joint diagonalization, that is, finding a common basis B which diagonalizes

simultaneous both matrices S; and S, (i.e. B'S;B =1 and B”S;B = A).

3  Oriented Discriminant Analysis

LDA is the optimal discriminative projection only in the case of having gaussian classes
with equal covariance matrix [1, 5] (assuming enough training data). LDA will not be
optimal if the classes have different covariances. Fig. 2 shows one situation where two
classes have almost orthogonal principal directions of the covariances and close means. In
this pathological case LDA chooses the worse possible discriminative direction where the
classes are overlapped (it is also very numerically unstable), whereas ODA finds a better
projection. In general, this situation becomes increasingly dangerous when we increment
the number of classes and the classes are closer (in terms of means and covariances).

In order to relax this problem, several authors have proposed extensions and new
views of LDA. Campbell [1] derives a maximum likelihood approach to discriminant
analysis by assuming all the classes have equal covariance matrix, he shows that LDA
is equivalent to impose that the class means lie in a /-dimensional subspace. Following
this approach, Kumar and Andreou [11] proposed heteroscedastic discriminant analysis
where they incorporate the estimation of the means and covariances in the low dimen-
sional space. On the other hand, Saon et al. [15] define a new energy function to model

the directionality of the data, J(B) = JT_;( “gg’:;‘
matrix and S, the between-class scatter covariance matrix. In this paper we extend pre-
vious approaches by deriving a probabilistic interpretation of the optimal discriminant
analysis in the case of having classes with different covariances. Also, our method scales

well to high dimensional data and efficient algorithms are developed.

)", where Z; is the class covariance



Flgure 2: PI‘Q]eCthIl onto LDA dlrectlon and ODA.

3.1 Maximizing Kullback-Leibler distance.

In order to take into account the class covariance information and assuming that the
classes are gaussians, in this section we will derive the optimal linear dimensionality
reduction which maximizes a distance between the projected classes.
A simple measure of distance between two gaussian distributions N(x;m;,2;) and
N(x;p;,Z;) is given by the Kullback-Leibler (KL) divergence [7]:

N(X; l»,2,~
KLjj= 1 [dx(N(x;p;, %) —N(x;uj,zj))log,\,((;Tw

=2r(Z7 42 T 2D+ (- )T (E HE ) (- ) 3)

The Kullback-Leibler distance between two gaussian distributions is proportional to the
distance between their means weighted by their covariances.

We would like to find a linear transformation B, common to all the classes (i.e.
NB u i BZ,B”) such that it maximizes the separability between the classes in the low di-
mensional space, that is, we want to maximize E (B) = $¢_; 3_, r((B"Z;B) ' (B'Z,B) +
(B'Z;B) "' (B"ZB))+ (u;— ;)" B((B"Z;B) ' +(B"Z;B) ")B” (u;,— ;). After some
simple algebraic arrangements, the previous equation can be expressed in a more compact
and enlighting manner:

o

C
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J
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Observe that we have introduced a negative sign for convenience, rather than search-
ing for a maximum, we will be interested in finding a minimum of G(B). A; = MP,M” +
25 2j> Where M € RY*¢ is a matrix such that each column is the mean of each class
and P; = 1.+ ceieiT — eilz — lcel-T € R*¢. Several interesting things are worth point-
ing out from eq. 4. If all covariances are the same (i.e. Z; =2 Vi), eq. 4 results in
tr((BTEB) BT3¢, Elil(u, B — uj)TB)) +c(c—1)I, this is exactly what LDA
maximizes. ODA takes into account not just the distance between the means but also the
orientation and magnitude of the covariance. In the LDA case, the number of extracted
features can not exceed the number of classes, because the rank of S, is ¢ — 1, however
in ODA we do not have this constraint and more features can be obtained. Unfortunately,
due to different normalization factors (B Z;B)~!, eq. 4 does not have a closed form
solution in terms of an eigenequation (not an eigenvalue problem).



4 Bound optimization

Eq. 4 is hard to optimize, second order type of gradient methods (e.g. Newton or con-
jugate gradient) do not scale well with huge matrices (e.g. B € #¢*!). Moreover, in this
particular energy function the second derivative is quite complex. In this section we intro-
duce a bound optimization method called iterative majorization [9, 12, 10] which is able
to monotonically reduce the value of the energy function. Although this type of optimiza-
tion technique is not common in the vision community, it is very similar to Expectation
Maximization (EM) type of algorithms.

4.1 Iterative Majorization

Iterative majorization is a monotonically convergent method developed in the area of
statistics [9, 12, 10], this is able to solve relative complicated problems in a straight for-
ward manner. The main idea is to find a function easier to minimize/maximize than the
original one (e.g. quadratic function) at each iteration.

The first thing to do in order to minimize G(B), eq. 4, is to find a function L(B)
which majorizes G(B), that is, L(B) > G(B) and L(By) = G(By), where By is the current
estimate. The function L(B) should be easier to minimize than G(B). A minimum of
L(B), By, is guaranteed to decrease the energy of G(B). This is easy to show, since
L(By) =G(By) > L(B;) > G(By). This is called the "sandwich” inequality by De Leeuw
[12]. Each update of the majorization will improve the value of the function, and if
the function is bounded it will monotonically decrease the value of L(B). Under these
conditions it is always guaranteed to stop at a local optima.

Iterative majorization is very similar to EM [14] type of algorithms, which have been
extensively used by the machine learning and computer vision communities. The EM
algorithm is an iterative algorithm to find a local maxima of /og p(D|0), where D is
the data, 0 are the parameters. Rather than maximizing directly the log likelihood, EM
uses Jensen’s inequality to find a lower bound log p(D|6) = log [ q(h)pa;{ilﬁ‘)e)dh >
J q(h)logm(;(’i{:gmdh, which holds for any distribution g(h). The Expectation step, per-
forms a functional approximation on this lower bound, that is, it finds the distribution
g(h) which maximizes the data and touches the log likelihood at the current parameter
estimates 0,,. In fact, the optimal g(h) is the posterior probability of the latent/hidden pa-
rameters given the data (i.e. p(h|D) ). In the maximization step, we maximize the lower
bound w.r.t the parameters 0. The E-step in EM would be equivalent to the construction
of the majorization function and the M-step just minimizes/maximizes this upper/lower
bound.

4.2 Constructing a majorization function

In order to find a function which majorizes G(B), we depart from the inequality [10],
1 1 1 1

assuming the following factorization holds A; = A?A? and Z; = 2?2?:

1

1 1
|((BZB) :B"A? — (B'Z;B)2 (BIZB,)B/A?||r >0



Rearranging this equation, it is easy to show the following inequality:
tr((B"ZB) ' (B"A;B)) > 2tr((BLZB,) ) (BTA;B)) —tr((B"EB) '(B]=;B,) '(B'A;B,)(B/ZB,) ')

Observe that just adding a sum to both sides of this inequality we obtain a function L(B)
which majorizes G(B), that is:

G(B) = —3,1r((B"ZB) " (B"AB)) < L(B) = — 3, 2tr((B; ZB,) ') (B; A;B))
"Hr((BTziB)_l (B;{ziBn)_l (B;{AiBn)(BZ;ziBn)_l)
Effectively, it can easily shown that L(B) majorizes G(B) since G(B,) = L(B,) and
L(B) > G(B).

The function L(B) is quadratic in B and hence easier to minimize. After rearranging
terms a necessary condition for the minimum of L(B) has to satisfy:

=3 -Ti+ZBF =0
F;= (BIZB,) '(BIAB,)(BIZB,)' T;,=A’Bl(BIZB,)"! )
solving eq. 5 involves solving the following system of linear equations Y; T; = ¥;Z;BF;.
The solution could be found in closed form by vectorizing eq. 5 with the help of Kro-
necker products. However the system would have dimensions of (d x [) x (d x [) which

is not efficient in either space or time. Instead, we use an iterative algorithm which mini-
mizes:

E(B) = ming|| Z(Tz’ —2.BF))||r (6)

Due to the huge number of the equations to solve (d x [), an effective and linear time
algorithm to solve for the optima is a normalized gradient descent:

1 _ JE(B)
Bl =B"— N5 @)
R, = EB) _ _ 3,BFT +3. 3, 7S, BF,F/
k= "9B — 2iZiBF; +3: 5 Z; Z(BF; k

n is the step size needed to converge. We find it by an optimization criteria which min-
imizes, n = min, || 3; Ti — 3; Zi(B+ nRy)F;)||. After some derivation, it can be shown
that 1 — SISkrERTTBTE) S, (=R, T:87)

n= S Sktr(ERTTI R ;) :

S Dealing with high dimensional data

Learning discriminative models from high dimensional data such as images requires sev-
eral strategies to get good generalization and computational tractability (e.g. feature se-
lection or dimensionality reduction). In this context LDA or ODA can be a good initial
step in order to preserve discriminative features in the low dimensional space. However,
as it is well known dimensionality reduction techniques such as LDA, which preserve dis-
criminative power can not handle very well the case that n << d (more dimensions that
training data), which is the typical one. For instance, an image of 100 x 100 pixels will
correspond to feature vectors of 10000 dimensions, which will induce covariance matri-
ces of 10000 x 10000. To make the covariance full rank, we would need at least 10000
independent samples available, even that would be a poor estimate.



In order to be able to generalize better than LDA and do not suffer from storage and
computational requirements, we approximate the covariance matrices as the sum of outer
products plus a diagonal matrix. We tried three of such factorizations:

3~ U,A,UlT + (7,2Id 3~ UIA,UIT + [3)1-2 (Id — U,U;r) 3~ U,A,U;r + W; ()

where U; € R/, A; € R1*! is a diagonal matrix with the eigenvalues and W; € R¥*? is
a diagonal matrix. In order to estimate the parameters 01»2, la’l-z, U;, A;, W, a fitting ap-
proach is followed. For instance, U;, A;, 07 are obtained by minimizing E.(U;, A;,07) =
||Z; — U;A;UT — 0%14||F. It can be shown that the optimal solution satisfies U;Z; = U;A;
and al-z =tr(R)/d, where R = %; — UiAiUl-T. In this case the eigenvectors to choose
are the ones corresponding to biggest eigenvalues, since we assume a convex spectra
of the covariance. However in the second factorization this would not necessarily has
to be the case, see [18]. Finding the necessary conditions for the optima in the other
two cases derives in B? = tr(PTR) /tr(PTP) = tr(R)/(d — 1), where P =1 —U;U! and
¥ =diag(R)/d.

It is worth to point out two important aspects of the previous factorizations. Factor-
izing the covariance as the sum of outer products and a diagonal matrix is an efficient
(in space and time) manner to deal with the small sample case, since we can compute
3B = U,-A,-(UI-TB) + OI-ZB. In this case we do not need to explicitly have the full covari-
ance matrix. On the other hand observe that the original covariance has d(d + 1)/2 free
parameters, and for instance in the first approximation of eq. 8 the number of parameters
is reduced to /(2d — 1 + 1) /2 (assuming orthonormality of U ), so we need much less data
to estimate these parameters and hence it is not so prone to over-fitting.

6 Experiments

6.1 Toy Problem

In order to verify that under ideal conditions ODA outperforms LDA, we tested it on a
toy problem. We have generated five 20-dimensional gaussian classes (d=20). Each sam-
ple from class ¢ was generated by y; = B.c + pu, +n, where y; € R2?*!, B, € R20>7,
¢~ N7(0,T) and n ~ Ny (0, 3I). The means of each class are g, =219, py =030 , 3 =
—2[010 110]T , Wg = 2[110 010]T , Us = 2[15 05 15 05]T. The basis BC are random
matrices, where each element has been generated from N(0,5). We impose a weak or-
thogonality between matrices (i.e. tr(BiTB i) =0Vi# j), with a Gram-Schmidt approach,
ie. B;=B;— E{;ll tr((BiBi)_lB]TBi)Bi Vj=2---5. We have generated 200 samples per
class and we have approximated the covariance matrices as £; = U;U7 + 071, such that
they preserve 90% of the energy. In order to classify the test set, we use a linear classifier,
that is, for a new sample d;, we project into the subspace by x; = B d; and we assign it
to the class that has smallest distance, (x; — [,il-)f,-_l (x; — i;) + log|Z;|, where fi, and Z;
are the low dimensional estimates of the class covariance. Table 6.1 shows the average
recognition rate of LDA and ODA over 50 trials. For each trial and each basis, we run the
algorithm 5 times from different initial conditions (perturbing the LDA solution) and take
the best solution. As we can observe from table 6.1 ODA always outperforms LDA and
it is able to extract more features.



Basis 1 2 3 4 5 6 7
LDA || 0.20 || 0.41 || 0.47 || 0.54 || NA NA NA
ODA || 0.2 || 0.60 || 0.72 || 0.81 || 0.88 || 0.92 | 0.95

Table 1: Average over 50 trials.

It is well known, that when d >> n (small sample case), PCA can outperform LDA
[13]. We run the same experiment as before but the dimension of each sample is 152 (i.e.
d=152) and just 40 samples per class are generated. The results can be seen in table 6.2.

Basis 1 2 3 4 5 6
PCA 0.51 || 0.64 || 0.68 || 0.77 || NA || NA
LDA 0.52 || 0.64 || 0.74 || 0.81 || NA || NA
ODA 0.50 || 0.84 || 0.90 || 0.95 || 0.98 | 0.99
PCLDA || 0.57 || 0.76 || 0.87 || 0.94 || NA | NA
PCODA || 0.47 || 0.83 || 0.90 || 0.95 || 0.97 || 0.99

Table 2: Average over 50 trials.

PCLDA refers to do LDA onto the PCA projection (preserving 95% of the energy) and
PCODA is the same with ODA. As we can see in the small sample case, ODA generally
outperforms all the other methods. By projecting onto the principal components, we avoid
the overfitting, and that is why PCLDA performs better than LDA. However, ODA does
it implicitly and performs similarly to PCLDA but more features can be extracted.

6.2 Face Recognition

Face recognition is one of the classical pattern recognition problems which suffers from
noise, limited number of training data and high dimensional spaces. In this experiment,
we took the MOBO database [8], where people are walking on a treadmill and automat-
ically segment (simple background subtraction) the heads of 24 people under 3 different
poses. The head is in similar position, but it is not registered, the registration is explained
in [4]. Figure 3 shows some samples of 5 people in the database. The images are 75 x 85
pixels and we have 240 samples for each class in the training and 240 samples in the test-
ing. We project all the data into the (240 x 24 = 5760) principal components, in practice
we drop the eigenvectors corresponding to zero eigenvalues, practically we end up having
around 4372 dimensional vectors and not the original 6375. In fig. 3.b the recognition
rates for ODA vs. LDA are shown. We can see that ODA outperforms LDA. The errors
are mostly due non perfect segmentation or registration.

We also tested ODA on the Yale face database B (http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html).
We took the frontal pose of 10 subjects under 64 illumination conditions, and use 75%
of the images for training and 25% for testing. The size of each image is 98 x 75 pixels.
Fig. 4.a shows some images of the training data and fig. 4.b shows the recognition per-
formance for PCA,LDA and ODA. In this case ODA performs slightly better than LDA
due to the nature of the problem. As before, we have projected the data onto the principal
components with non-zero eigenvalues.
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Figure 3: a) Taining images. b) LDA vs ODA

Basis 2 3 4 5 6

PCA || 0.31 | 032 | 0.39 || 0.59 || 0.63
LDA || 0.63 || 0.83 || 0.90 | 0.97 || 0.97
ODA || 0.71 || 0.84 || 0.92 || 0.96 || 0.97

Figure 4: a) Training data. b) Recognition rates.

7  Discussion and future work

In this paper we have introduced ODA which extends LDA taking into account the ori-
entation of the classes. Additionally a linear time algorithm to search for a local optima
is presented and a simple factorization method will be able to deal with the small size
problem. Several synthetic and real experiments confirms that ODA outperforms classi-
cal LDA. However, several issues remains unsolved, there is need for optimization algo-
rithms which improve the convergence and can find global optimal solutions. It could be
interesting to train ODA using recent techniques of Adaboost, boosting, etc [6] which use
a greedy strategy to look for local optima but they improve generalization. On the other
hand, in the context of face recognition from video, one of the most important steps is
registration and being able to deal with outliers and missing data.
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