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Abstract

A general framework for 2D multiframe and 3D surface-toface mo-
tion estimation is presented in this paper. By viewing a 2Btcor sequence
as a pseudo 3D surface, we solve the motion estimation profole2D mul-
tiframe and 3D surface-to-surface in a general framewoyledtimating the
motion of a "surface”. The deformation of a "surface” is mtstkusing
spline-based motion. This spline-based motion model do¢onstrain
the motion type in the temporal domain for 2D multiframe rootestima-
tion. For 3D motion estimation, we focus on the relationdhgween the
underlying nonrigid motion and 3D surface properties. Tpkns motion
model provides our method certain advantages over otheigidrshape-
based methods. For example, we do not need approximatidre afrthog-
onal parameterization. The small deformation constraittbduced by the
previous surface-to-surface motion estimation methodssisrelaxed in our
method. Experiments on both synthetic and real motion asgmted in this
paper.

1 Introduction

Nonrigid motion estimation and recovery of point corresp@mces are important prob-
lems in computer vision. The applications of nonrigid mntamalysis include medical
imaging, face modeling, tracking, among several otherg fidnrigid motion estimation
methods can be roughly classified into geometric and phiyisacsed methods. The ad-
vantage of geometric (shape-based) methods is that matisolély estimated from the
visual data.

1.1 Previous Shape-based Methods

Some shape-based methods assume that the change of nonchasreatures are the
minimum during motion. Motion recovery is achieved by mirding the differences be-
tween these geometry properties of the before-motion aed-adotion objects. In [19],
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the shape invariance is combined with geodesic distancetermine point correspon-
dences between surfaces. In [7] the curvature invarianeseid to measure the motion of
deformable objects. The shape invariance properties soeuaked in [8], which is based
on the popular ICP [3][20] registration method but has bedereled to the nonrigid

situation. Some other examples of the shape-based metadtigjf16].

These shape-based methods can be applied to both 2D contbB8Desurface situa-
tions. However, in 2D case, none of these methods addressuitirame motion estima-
tion problem which requires additional temporal constraMultiframe motion estima-
tion is a more general problem in 2D since the object motiageiserally represented by
a sequence of contours (instead of a pair). Simple extemnditrese contour-to-contour
registration methods to multiframe only takes into accdhatspatial constraint, however
loses the temporal information.

In 3D case, surface-to-surface motion analysis is commmaest is difficult to obtain
real-time 3D sequences in order to perform 3D multiframeiomanalysis. Noticing
that the intuition behind shape-based methods referredeafoee refer these methods as
direct shape-basenhethods) is that the shape properties do not change betwdanes
but curvature and normal are only rigid invariants, someaeshers have been developing
differential geometric methods [10][11][12][13] to captuithe shape changes caused by
the underlying nonrigid motion. These methods are refeasdonrigid shape-based
methods in this paper.

1.2 A General Motion Estimation Framewor k

A 3D surface can be represented as set of 3D pofiiisy,z), while one point on the
th frame of a sequence of 2D contours is giverXs, y,t). If we take the temporal di-
mensiont of a 2D sequence as a special "spatial” dimension, the 2Docorsequence
can be viewed as a pseudo 3D surface inxhey —t space. We solve the motion esti-
mation problem for 2D multiframe and 3D surface-to-surfica general framework, by
estimating the motion of a "surface”The "surface” could be a real 3D surface in the
X—Yy — zspace for the surface-to-surface registration or it coeld pseudo 3D surface in
thex —y—t space for 2D multiframe registration. Motion of a given 8B y — z surface

is between this surface and anotlery — z surface while motion of a pseudo-y —t
surface is within the same surface and is between points msecative frames.

We model the "surface” motion using a GRBF (Gaussian Radii€Function) to
solve the 2D multiframe and 3D surface-to-surface motidimegion problem. 2D multi-
frame motion estimation for heart has been presented injutshis method is restricted
to periodic motion and a periodic mapping function has todieeated. By viewing a 2D
contour sequence as a pseuxdey —t surface and modeling the "surface” motion with a
GRBF, we do not restrict the motion type of the 2D contour. iliddal temporal motion
model of 2D multiframe is not required in our method and iiporated into a single
GRBF with the spatial motion.

For 3D surface-to-surface nonrigid motion estimation, weut on the relationship
between the underlying nonrigid motion and 3D shape pragsertThis is similar to
nonrigid shape-based method®][11][12][13]. In these previous nonrigid shape-based
methods, motion models are all defined in different localrdowte systems for differ-
ent points on the before-motion surface since the basitioakhip between underlying
motion and shape properties is described in a local coaedsystem. These definitions
introduced two problems. First, the motion defined in th@l@oordinate system has no



explicit physical meaning. Second, the motion consisten®r the entire motion field
as a whole cannot be guaranteed with local motions defineiff@reht local coordinate
systems. We still utilize the nonrigid shape relationstafirted in thelocal coordinate
system but model the surface motion wittsiagle GRBF. In addition, we relax small
deformation constraint to allow higher order deformatiobgtails of the advantages of
our 3D motion estimation method is presented in Section 4.

2 Nonrigid motion modeling: GRBF

In this paper, we model the nonrigid motion of a "surfacengsthe GRBF (Gaussian
Radial Basis Function). The radial basis function provideth global and local control
of deformation. It has been widely used in computer visiod aredical imaging, such
as image registration [4][9], image warping [2] and surfe@eonstruction [5]. The basis
function of RBF can be thin plate spline (TPS), Multiquadlircear or Gaussian [9][2][4].
Compared with other RBFs, Gaussian radial basis functid®Bg is localized in scope
and gives a significant response only in a neighborhood areanh control point. It is
more biologically plausible since its response is bounded.

Given a "surface”, the motion estimation problem can beté@as recovering the
displacement for each point on this surface. For 2D multtigathe displacement of each
point on the pseudw—y—t surface starts from this point and ends at a point on the same
pseudo surface. The starting and ending points are locatmhisecutive frames, e.g. the
t™h and(t 4+ 1)!" frames, of the 2D sequences. For 3D surface-to-surfacejgpcement
of each point on the given before-motirn y — z surface starts from this point but ends
at a point on another— y — zsurface (the after-motion surface).

The displacement field can be described using a GRBF whienpalates the dis-
placementsat intermediate points using the displacement values ahgientrol points.

If there aren control points, a GRBF il dimensions, denoted t§(X) is composed of
d functions such thatS(X) = [f1(X), ..., fk(X), ..., fg(X)] where fi(X) is the displace-
ment function of poinX in the k" dimension.f(X) has a global component and a local
componentfy(X) = Qu(X) + 3, awg(r?).

The global componen€(X) is usually a global affine. i.eQu(X) = agX+ aqwy +
axz+ ag whend = 3. The local componenty}. ; aikg(riz), is the sum of a weighted
elastic basis functiog(r?) = e'/3 wherer; denotes the distance from the point of inter-
est,X, to theit" control point.d is the Gaussian locality parameter, are the weighting
parameters.

For convenience, we define a GRBF parameter veRter|[Py,..., R, ..., P4]T where
P is the parameter vector for th&' dimension. In 3D case, the component§pére the
global affine parameteggy, a1k, ax, ask and radial parametersy,i =1,...,n.

3 2D Multiframe Motion Estimation

3.1 Motion Model for 2D Multiframe

Assume that the boundary of a moving object has been extr&cin 2D images. A se-
guence of 2D contours is available after the extraction.upglerstanding and character-
izing the object motion, one must first obtain the point cgpendence between contours
of consecutive frames. To ensure that the frame-to-framespondence gives a consis-
tent point-tracked trajectory, point correspondencevegpand motion estimation based

LIn this paper, we use the terrdisplacemenandmotioninterchangeably.
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Figure 1: Spatio-temporal Gaussian functions with difféfe Note that wherd changes,
the distribution of this Gaussian function varies in ttdimension while it is the same in
thex dimension.

on multiframe is a better choice than contour pair. Multiiestimation combines the
spatial and temporal constraints into a single framewortke &stimation between con-
tour pair (contour-to-contour) loses the temporal infotiorasince it is only performed
on consecutive frames.

A potential application of our 2D multiframe motion estinagt method is tracking the
motion of a contour representing human tongue surface freegaence of 2D ultrasound
images. In an ultrasound image, only part of human tonguaseiis presented thus the
surface is extracted as a open contour. Suppose a sequenperoéontours is available
and the open contour at time instardeas the Monge forng = y;(X). For a pointX(x,t)
which has spatial coordinate,y;(x)) and located on th&é" frame, the displacement
Ax(X) of the x dimension will uniquely decide the motion of this point. $hnotion
can only move poinK(x,t) to some poiniX’(x,t’) on the(t + 1) frame wherex =
X+ &x,t" =t+ 1. Ax(X) is modeled as a spatio-temporal GRBF in which the control
points are sampled evenly fromxa-y —t pseudo surface formed by the 2D contour
sequence. Thatis, control points are picked up from mtdtires of the sequence. With
this spatio-temporal modelingx(X) is not only influenced by control points on tH&
frame, but also interpolated using displacements of cbptimts through multi-frames.
Temporal information is incorporated naturally since raotbf each frame will affect not
only itself but also other frames in the sequence. In anatleeds,Ax(X) is modeled as
a function of the GRBF parameter vecRirAx(X, P).

Note that for a poinX(x,t), the spatial and the temporal parameters are of different
nature, they must be treated differently. The distance fpoint X (x,t) to theit" control
point is defined as:

ri = (A8 + (AAt)?)Y/?2 (1)

whereAs is spatial distance in the dimension and\t is the frame difference between
point X (x,t) and theit" control point.A is the nonuniform parameter which controls the
temporal motion. Largek indicates less uniform temporal motion. With the distance
defined in Eq. 1, the Gaussian functigt?) becomes a spatio-temporal kernel function
which has nonuniform effect in theandt dimensions. Examples of the spatio-temporal
Gaussian functions are shown in Figure 1.

3.2 2D Multiframe Correspondence Recovery
The displacememtx(X, P) from pointX(x,t) to the corresponding poidt' (x+Ax(X, P),t+
1) is decided by the following criterion functions: Euclidepoint distanceky, differ-



ences in the norm&,, and curvaturé&y, integrated over multiple frames:

Eq(P) = |y(X) =Y (X+AX(X,P))[2  En(P) = In(X) — ' (x+AX(X,P))|?  Ex(P) = [k(X) — K (x+Ax(X,P))|%. 2)

Wheren’ andk’ denote the normal and curvature of poXii(x + Ax(X,P),t + 1),
respectively.

The GRBF parameter vect& that minimizes the above criterion functions is esti-
mated using the Gauss-Newton optimization technique ag & criterion functions are
approximated using a Taylor approximation. For example:

Ex = [K(X) — K (x+AX(X, Pp)) — 7K Ip(P — Po) 2 3)

whereP, is the GRBF parameter vector estimated from the previotatiten or the initial
value of P in the first iteration. 7k’ denotes the derivative of the curvatldeon the
(t+ 1)t frame. Jp is the Jacobian matrix which denotes the matrix of partiaiveéves
of Ax with respect to the unknown componentdofFor example, if the global affine of
GRBF is the 1D affin@ox+a; and the radial kernels aggr?), ..., g(r2):

Jp= [X7 1vg(r%)a"'7g(r%)]' (4)

P can be resolved from set of linear equations derived from E@nd the similar
approximations oEq andE,. The linear equation dfy at one poinX(x,t) is:

VK Ip(P—Po) = k(x) — K'(x+AX(X, Ry)). ()

Similar linear equations foEy andE, can be obtained. The set of equations is then
solved as aveighted least-square(WLB)oblem with weighting parametevg;, wy, We
for Eq4, En, andE, respectively.

For fast and steady convergence, a coarse-to-fine algoistimplemented to recover
the GRBF parameter vect®x The 2D contours are first transformed to the Fourier do-
main [17]. High frequencies are filtered to smooth the cont&@urvature and normal
are calculated according to the current smooth contourso\Reed GRBF parameters
from current level are input to the higher level by incregdime filtering threshold in the
Fourier domain. The whole process stops at a fine level.

4 3D Surface Motion Estimation

Similar to 2D multiframe motion estimation, motion betwesmfaces is modeled using a
GRBF for 3D surface-to-surface motion estimation. Differith the direct shape-based
method, the shape relationship between two surfaces isideddy underlying nonrigid
motion in our method. Although similar relationship has hemsed in some previous
nonrigid shape-based methods, our method differs fronethesthods due to our GRBF
motion modeling. Small deformation constraint is alsoxetiin our method.

4.1 Background

In this section we present the background for the unit norchahges under nonrigid
motion. Letr = [u,v,w]" (usually we can writav = f(u,v), thusr can be represented
in the parametric formr = r(u,v)) denote a point in the local coordinate system which
is defined for each point of interest on the before-motioffiesir. Lets(r) denote the



displacement function in the local coordinate system; treasponding point af on the
after-motion surface can be definedras-r +s. The motion estimation problem now
becomes the problem of finding the best displacers@ntfor each point of interest.
Theunit normaln’ of the after-motion surface is related to theit normaln of the
before-motion surface by the underlying mot®as [14]:
, n x rots

n=n-——p (6)

where6 is modulus of dilationf = LSD. D =+vEG-F2andE, F, G denote the coeffi-
cients of the first fundamental form of a surfaces&et%ru X S+ ér\, X Sy.

The above equation is the basic nonrigid shape relationghipsed for 3D surface-to-
surface motion estimation. Note that the previous nonsgape-based method [10][11][12][13]
has an additional approximatiéh 1, which leads to the nonrigid shape relationship for
small deformation:

n"=n-nxrots (7)

Note that the crucial requirement of Egs. 6 and 7 is the odhafjparameterization.
Previous nonrigid shape-based methods approximate thegmmality at points inside a
local patch around each point of interest. In our approdeh]dcal patch around each
point of interest is not required for the motion recovery antly the orthogonal parame-
terization at the point of interest is needed, which can k#yeguaranteed by constructing
aprincipal local coordinate systet each point of interest [1].

4.2 3D Surface-to-surface Correspondence Recovery

With regularly subsampled control points, the displacen$¢K) of each poiniX on the
before-motion surface is interpolated by the displacemehthe control points with a
GRBF.

Note that the GRBF displaceme®X) is defined over the whole surface, thus it is
represented on the world coordinate system. While theioeksthip between unit normals
of the before-motion and after-motion surfaces only holth@principal local coordi-
nate systenconstructed at each point of interest, an additional stapttAnsforms the
displacemens in the world coordinate system to the displacen®intthe principal lo-
cal coordinateis necessary. For each point of interest, given the unit abmas thez
axis and two principal directions; andr, as the other two axes of th@incipal coor-
dinate systema rotation matrix that transforms (omit the translatiortpardinate point
from the world system to the local system can be defiree: [riron|". Thus the dis-
placement defined in the world coordinate system can be transformeldeprincipal
local coordinate systemith this rotation matrixs(r) = RS(X).

Recall that is the GRBF parameter vector, we can re-w8(X) ands(r) asS(X,P)
ands(r,P). Eg. 6 now can be expressed wRfas the unknown parameter:

A(r,P)

n'(r+s(r,P))=n(r)— 110

(8)

WhereA = n x rots.
We now have the following unit normal criterion to decide ffant correspondence
between surfaces:

—(r 4 s(r, ). (©)




,
e

R/ E
N
(b) (c) (d)
Figure 2: (a) Performance comparison between "Multifraaued "CC” on the first syn-
thetic sequence. (b) The second synthetic test: first twtbcwsand deformation between

them. (c) The second synthetic test: last two contours afafmation between them. (d)
The second synthetic test: performance comparison betidgtiframe” and "CC”.
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Similar to 2D multiframe approach, the motion veckis recovered using Gauss-
Newton technique by combining the above unit normal coteidnd the Euclidean dis-
tance constraint. Details of the optimization process @fobnd in [14].

5 Experiments

We performed several tests on 2D sequences and 3D surfaaedtate our nonrigid mo-
tion estimation method. In 2D tests, we compare our muitizanethod ("Multiframe”)
to the contour-to-contour method ("CC”), which is the gexiepproach used in [7][18]
and [16]. In 3D tests, our nonrigid shape-based method ipeoed to Wang’s shape-
based method ("Wang’s”) [19] and the previous nonrigid ghbpsed method [12] which
is restricted to small deformation ("SD”).

In order to make quantitative comparisons, We defiogespondence erroreg =
||p' — pi|| for both 2D and 3D tests, whepé is the recovered corresponding point gid
is the true correspondence point for the point of intepesh the before-motion contour
(for 2D) or on the before-motion surface (for 3D).

5.1 2D results

The first 2D test is conducted on a synthetic 2D sequence. Ageléorm curve {50 <
x < 50), which is a part of an ellipse (semi-ax@s- 60,b = 40), is chosen as the first
contour of the 10-frame sequence. Consecutive frames ga@el by nonuniformly ex-
panding the previous frame with scaling paramete®s aAnd 108 for thex andy dimen-
sions, respectively. These 10 spatio-temporal contours fopseudo — y —t surface.
We apply our multiframe method to this "surface” and the pobrrespondence between
consecutive contours is recovered. The ninerespondence errorBy our multiframe
method is shown in Figure 2(a) and compared with the restdta tontour-to-contour
estimation. Significant improvement of "Multiframe” ove€C” is observed due to the
fact that temporal information is incorporated in the nitdtine method.

To test our method with contours in real life and with compteation, we picked
a tongue contour as the starting contour to create a condguiesice. Each subsequent
contour in this sequence is obtained by deforming the ptesvomntour with a TPS trans-
formation. The coefficients of the TPS were sampled from asGian distribution with
zero mean. The first two contours of such a sequence are simokigure 2(b). Defor-
mation between these two contours is also shown in the samee fity comparing the
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Figure 3: MSD value comparisons on real tongue sequence.

original regular square grid (dashed lines) with its transfed grid (solid lines). There
are ten contours in this sequence. The last two contourseo$dme sequence and the
deformation between these two contours are shown in Figiale 2omparison between
"Multiframe” and "CC” is presented in Figure 2(d). The avgeaserror of "Multiframe”
is 0.55 while it is 0.59 in average for "CC”. Overall perfornee of "Multiframe” is still
better than "CC". We run the same test hundreds of times stiagthe sequence with
different TPS coefficients and similar results are observed

The last 2D test is conducted on real tongue contour seqaesxteacted from ul-
trasound images with resolution 640x480. There is no greawnth correspondence in
tongue contour sequence thag, is not available for evaluation. Noticing the tongue
motion is continuous, we interpolate cont@ir; andC;. ; according to recovered corre-
spondence to obtain an interpolated con@ucC] is compared with the redl" contourG;.
Smaller distance betwe&) betweerC; indicates a better correspondence recovery. The
distance measure between two contali@ndV is defined as the Mean Sum of Distance
(MSD): MSD(U,V) = %(z{‘zlminj Vi —uj| + Sy min; |u — vj|) wheren is number of
points on the contour. MSD is a measure of pixel errors betveeatours. Three tongue
contour sequences are tested. There are eleven framescfosequence. MSD value
comparisons between "Multiframe” and "CC” at even frames stiown in Figure 3(a),
(b) and (c) for three sequences, respectively. The firstuersgquence is obtained from
the speech "ea”. The second sequence is from the same spetichdame subject but in
different session. The third sequence is the speech "gbihé different subject.

5.2 3D Results

The synthetic experiments are first conducted to evaluatgénformance of our algo-
rithm quantitatively. Given the before-motion surfaXe= (x,y,X(x,y)) and the after-
motion surfaceX’ = (X,y',X’(X,¥’)), we ran our algorithm to recover the correspondence
and compare the result with the ground truth. The initialiorots given by arivial cor-
respondencwhich is defined ag’' = x, y = yandZ = X'(X,y).

We show our results on the surfagkga Monge patch;-60 < x < 60,—60<y < 60)
of an ellipsoid with semi-axes lengths= 120 b= 110 ¢ = 90. The after-motion surface
X' is obtained by scaling with different parametersy,dy, and o, for the x, y andz
dimensions, respectively. The synthetic experimentsaneucted for several situations.
We present a typical such experiment whége= 1.15, éy = 1.18 are fixed whiled; is
varied from 11 to 12 with a step 1. The correspondence was recovered for these
eleven situations.

The results of our algorithm are also compared against Wastgipe-based method
[19]. We also recovered the correspondence with Eq. 7 wisiciséd in the SD method
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Figure 4: (a) Correspondence errors of the first synthetite3D (b) (c) and (d) are three
examples of the synthetic 3D test with complex motion. (liidhzation: cer = 3.16.
SD: Cerr = 0.84. Our methodcer = 0.60. () Initialization:Ce;r = 2.37. SD:Cerr = 0.98.

Our method:cerr = 0.87. (d) Initialization: cery = 2.84. SD:Cerr = 0.74. Our method:
Cerr == 067

[12]. The initial correspondence errorsecoveredorrespondence errorsf our method,
Wang’s method and SD method are shown in Figure 4(a). Oneeamfr@m this figure
that our method outperforms both Wang’s and SD method.

Similar to the 2D test, we tested our surface-to-surfacéaneistimation method with
complex motion. The after-motion surfaié is deformed fromX with a TPS transfor-
mation. Three examples are shown in Figure 4(b), (c) and (d)these three figures,
the recovered 3D displacement (dash) by our method is pgeajd@o thexy plane and
compared with ground truth displacement (solid). Wang'shoe fails for these complex
motion and our method still outperforms the SD method. SgarEi4 for details.

Our method is also evaluated with real motion. The real nmoté an object is
recorded by stereo imaging at two time instangeandt,. Object motion betweety
andt; is reconstructed from the motion of some feature points.difject motion is then
mapped from the object space to the space of the sufaafier-motion surfacX’ is de-
formed fromX according to the mapped real motion. The details of the matiapping
can be found in [14].

The first evaluation of real motion is conducted with the papnding motion. We
also evaluated our algorithm with two types of real face omi First is the motion from
a neutral to a smile face and the second is from the neutralttaan open-mouth face.
Feature points are marked in these two face tests.

In total, five deformations are tested for paper bending. ilihial trivial correspon-
denceerrors, recoveredorrespondence errogy our method and SD method are shown
in Figure 5(a). Results for these five small-to-large papeding deformations are shown
from left to right. In all situations our method is better thihe SD method. As the de-
formation increases, correspondence error increasesfombethods but the error of SD
method increases faster than our method as expected. s shat the small deforma-
tion requirement of Eq.7 is relaxed in Eq.6, which is usedinmethod. Correspondence
errors of five small-to-large smile and five small-to-largeen-mouth deformations are
also shown from left to right in Figures 5(b) and (c), respety. Similar results as the
paper bending experiment are observed in smile and operthregperiments.
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Figure 5: Correspondence errors.

Conclusion

A general framework for 2D multiframe and 3D surface-toface motion estimation

is presented in this paper. Experiments show that our 2Difirautie method is better

than the contour-to-contour motion estimation method andsarface-to-surface method
outperforms previous nonrigid shape-based methods. é&uwarks include developing

a radial basis function with compact support for the 2D nfnalthe method in order to

supply stronger control in the temporal domain. For the 3Base-to-surface motion

estimation method, combining the nonrigid Gaussian cureatelationship with a single

spline-based motion is our ongoing research.
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