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Abstract

A number of investigators have had success using domain specific prior knowledge to pro-

duce improved superresolution images of faces (“hallucinating faces”). These efforts ad-

dress the scenario where a face image is obtained from a low-resolution camera. A related

but less studied problem occurs when the missing information is the result of occlusion

rather than low camera resolution, as in the case when a person is wearing sunglasses.

Recently Hwang and Lee [14] introduced the first algorithm for solving this reconstruc-

tion “inpainting” problem. In the current work we report results of a psychological study

that provides independent evidence regarding the validity of the face reconstruction task,

and we demonstrate an improved reconstruction approach using a positive, local linear

representation. The positive, local mixture operates on real-world images without manual

intervention in many cases, and provides demonstrably lower reconstruction error than is

obtainable with a global representation.

1 Introduction

When a stranger removes his or her sunglasses, we may occasionally be surprised by

their appearance – or their appearance may be unsurprising. The fact that we can have

expectations on a part of the face that we have not seen suggests that there are correlations

between the appearance of that region and other visible face regions, and that, as human

observers, we have some knowledge of these correlations. In fact this is true: roughly

Figure 1: People have considerable knowledge of the conditional probability densities of

parts of the face. For example, most people easily predict that the individual on the right

has thicker lips than the person on the left.
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eight out of ten people correctly estimate that the individual on the right in Fig. 1 has

“thick” rather than “thin” lips, and nearly everyone believes that this individual has thicker

lips than than the person on the left (see Section 2).

In this paper we give experimental evidence that humans have considerable knowledge

of such conditional probabilities for several parts of the face. We then describe a simple al-

gorithm that represents the underlying correlations between different face regions and al-

lows a “best guess” reconstruction of an obscured region. A ‘cascaded similarity’ scheme

allows known regions of a novel face to be represented as positive linear combination of

similar training faces. The same positive local linear combination is adapted to provide

successful reconstruction of unknown face regions, and it out-performs the reconstruction

obtained from a standard least squares (positive/negative, global) linear representation in

many cases. This algorithm complements the successful face superresolution or “halluci-

nation” algorithms but addresses a different problem scenario in which large regions of a

face are obscured.

After reviewing related work, the remainder of the paper is organized as follows: Sec-

tion 2 discusses human performance on the face reconstruction task. Section 3 describes

our reconstruction approach, and Section 4 evaluates our results.

1.1 Related Work

A number of authors have exploited domain knowledge in producing superresolution im-

ages of faces [1, 15, 18, 11, 12]. The original “face hallucination” work [1] gave a MAP

formulation of face superresolution in which a per-pixel prior on the unknown image

gradient is obtained from a nearest-neighbor search of image feature vectors in the high-

resolution training images. In [11, 12], the eigenvectors of a training set of high-resolution

faces provide the prior for superresolution reconstruction of faces directly in the low-

resolution face eigenspace – expansion to a pixel representation is bypassed, providing

computational efficiency for some applications. In [18] good results were obtained on

the same face hallucination problem using a non-parametric sampling approach similar

to recent texture synthesis methods to provide the unknown high-frequency detail. While

these approaches assume dense and regularly spaced pixel information, Hwang et. al. [15]

take a slightly different approach by reconstructing faces from scattered sample points.

Although the face superresolution problem has been considered by a number of au-

thors, a related face enhancement problem remains relatively unexplored. In this problem

scenario an entire region of the face is unknown, as would be the case if the eyes are ob-

scured by sunglasses, or if the mouth is obscured by the head of a closer person or some

other object. This is termed the “inpainting” problem in the computer graphics literature.

Recently (and concurrently with our own work) Hwang and Lee [14] introduced the first

algorithm to address this problem. Following [16, 15], Hwang and Lee [14] represents a

face image with two eigenbases, one for the shape correspondence between the particular

face and a mean or reference face, and a second for the shape-normalized face texture.

Given a face with obscured regions, the shape and texture of known regions are fit with

a linear combination of their respective eigenvectors, and the same linear combination is

then used to recreate the unknown region. The examples in [14] are primarily images of

synthetic 3D face models with identical controlled lighting.

In this paper we also adopt the appearance/morphable model representation [8, 16],

and use the fit over known regions to extrapolate the unknown regions. Our work is dis-



tinguished in its use of a convex local representation that provides improved performance

in real-world cases (section 3), and in our inclusion of a psychological study (section 2)

that provides supporting evidence regarding validity of the face reconstruction task.

2 Human Knowledge of Face Proportions

Figure 2: Using Photoshop to carefully

interchange the mouths of two individ-

uals produces unusual faces. (The lumi-

nance of the mouths has been adjusted

to better blend into the target faces).

Figure 3: A web experiment presented

pairs of face images in which the pro-

portions of some part (in this case the

mouth) are subtly manipulated. Sub-

jects generally had a clear preference

for one of the images as having a more

“natural” appearance, and their prefer-

ences were consistent with a computed

probability density of face feature pro-

portions.

The validity of the machine face reconstruction task is an open question, since one

might object that a demonstrated reconstruction is merely the result of a small or biased

set of training images, and that many other reconstructions are equally plausible. Psy-

chological experiments can provide independent evidence regarding this question. The

results summarized in this section show that, on the contrary, the conditional densities of

important face regions (eyes, nose, mouth) possess little uncertainty.

We first noted the possible extent of correlations between different face regions by

creating face images with obscured regions (Fig. 1) and asking people to describe their

guess of the appearance of the obscured region. For example, when we asked people to

characterize their guess of the missing mouth on the individual on the right in Fig. 1 using

the terms “thin” versus “thick”, a majority of people correctly state that the individual

probably has thick lips. When we showed both pictures in Fig. 1 and asked which of the

two individuals has thicker lips, nearly everyone gave the correct answer without hesita-

tion. Similarly, in Fig. 2 we show the result of interchanging the mouths of two individuals

using the Photoshop image editing tool. The resulting faces are unusual, again suggesting

that human observers have implicit knowledge of conditional face probabilities.

These observations were later formalized in a web study in which 30 people were

asked to identify which of a set of computer manipulated face images appeared most

natural. All the images were altered by a thin-plate spline warp (to produce equivalent

image resampling effects in all cases), with the proportions of either the eye, nose, or

mouth regions being altered by various amounts. Image pairs were randomly selected



from five graduated alterations (with duplication prohibited), so both obvious and subtle

alterations were tested. Subjects viewed up to 600 pairs of such images and were asked to

pick the image of each pair that appeared most natural (Fig. 3). Subjects were instructed

that they could stop at any point. Partial results are valid since the task is identical in each

trial. We retained all results in which the subject completed at least 50 pairs. A total of

8340 pair votes were obtained, with each person completing an average of 278 pairs.

The subjects’ ratings were compared with a kernel density computed from the eye,

nose, and mouth widths of faces in the training database (Fig. 4). The Gaussian ker-

nel width was set to 1/10th of the standard deviation of the data along each dimension

(anisotropic). Subjects’ rating were in agreement with the kernel density in 74.0% of the

trials, meaning that if a subject rated face A as being more natural than face B, the kernel

probability also assigned A a higher probability, K(A) > K(B). After removing pairs with

an insignificant difference in probability (|K(A)−K(B)|< .001), the percentage of agree-

ing pairs increased to 87.7%. (Our web-based study also may have provided lower quality

data than would be obtained in a study with paid subjects under controlled conditions, so

these percentages may be lower than their true values.)

In this experiment people are effectively rating the plausibility of the manipulated face

region conditioned on the appearance of the rest of the face. The experiment presented

a variety of subtly altered faces without obvious alteration artifacts (Fig. 3), yet subjects

chose faces consistent with a kernel density computed from the data even when presented

with other choices. This result confirms that face regions are correlated (Fig. 4, left)

rather than independent (Fig. 4, right), and that the reconstruction results shown here (and

in [14]) are not necessarily an artifact of a small or biased training set. Again note that

all images were manipulated, so subjects could not identify the “real” images simply by

evidence of alteration.

3 Reconstruction Algorithm

3.1 Face Model

Following [16, 8] a face image is encoded as a linear combination of shape+texture vec-

tors. The face shape consists of the x and y coordinates of 94 feature points (Fig. 5).

Feature points are used to define a warp that provides a dense shape correspondence be-

tween different face images. We use thin-plate splines to define the x and y warps since

the thin-plate spline minimizes an approximate curvature and thus provides smooth inter-

polation though the points. The face texture is the face image warped into the shape of the

mean face. A total of 400 faces from the FERET database [20] were used as training data.

The feature points (shape) for a novel face can sometimes be located automatically with a

gradient descent fit ([8, 16]; we use a procedure similar to [8]), though this procedure can

fail due to unusual hair, lighting, or other factors.

3.2 Local Linear Face Representation

Linear appearance models in computer vision have been pioneered independently by a

number of authors including [2, 9, 13, 16, 8]. While linear representations are simple, in

general they can be expected to be accurate only over small regions. In the case of faces,

the probability density of some face proportions is not convex and is highly structured

(Fig. 4), so there is some danger that a linear combination of very different faces may



Figure 4: (Left) kernel density visu-

alization of the distribution of the eye

width (X axis) versus nose width (Y

axis) versus mouth width (Z axis) for

400 faces. (Right) shape of the den-

sity resulting from the product of the

marginal densities of the eye, nose, and

mouth widths taken separately. The true

distribution (left) suggests that a linear

mixture of faces may produce an un-

usual or unrealistic result if the faces in

the mixture are separated by low prob-

ability “holes” in the density; this fact

is not evident when looking at the dis-

tribution of individual features (right).

Human subjects have considerable im-

plicit knowledge of the true distribution

(Section 2).

Figure 5: Training faces are labeled

with 94 feature points. Several points

between the lips are coincident in this

closed-mouth image.

Figure 6: Extrapolation from distant

data is safe if the data has a simple den-

sity (right) but not with the complex,

non-monotonic density on the left.

result in a face image that falls in one of the “holes” in the distribution (Fig. 6), i.e., a

face with unusual and perhaps unrealistic proportions. Mixing a large number of faces

can also result in the “blurring” that is frequently visible in eigenface reconstructions.

The limitations of a global linear model have been addressed by fitting a collection of

local linear models (e.g. [5, 3]). We adopt this local linear approach, but rather than using

pre-defined clustering, we instead dynamically select the cluster best suited to represent

a given face. This is done by a novel nearest-neighbor scheme (described next); it might

also be considered as a form of outlier rejection in fitting the local linear model. (Note

that “local” refers to the distance in the face representation space, not in the face image.)

3.3 Cascaded Similarity Threshold

The selection of nearest neighbors brings up several issues: how is “similarity” defined,

and how is the threshold chosen? While the choice of a threshold can be a worthwhile

design parameter, it seems somewhat arbitrary to include one data item but reject another

that may be arbitrarily close but lying on the other side of the threshold. Although the

ultimate choice of basis for a similarity measure is not always explicitly discussed in the

literature, some applications require a similarity measure that is reasonably correlated

with the human rankings of face similarity. For example, if witnesses describe a sought

individual as looking “like a younger brother of Paul McCartney”, a face recognition



Figure 7: Positive-only versus unconstrained reconstruction with extensive training data:

left, original image; middle, positive-only reconstruction of the mouth region; right, re-

construction with unconstrained (positive and negative) weights.

algorithm can contribute to the search only if its similarity measure correlates with human

similarity judgments. For face data the common sum squared error (L2) norm may not

relate well to human similarity judgments.

Based on these considerations, we use a cascaded sequence of psychologically rele-

vant weak similarity measures to select the nearest neighbors (this resembles slightly the

cascaded use of weak classifiers in boosting [10]). Specifically, we use three similarity

criteria,

• skin texture variance

• eye, nose, and mouth locations

• eye, nose, and mouth sizes

These particular measures were selected based on psychological evidence that humans use

these features in discriminating faces [6, 19]. Given a face, a set of weakly similar faces is

first selected using the skin texture variance measure, using an L2 distance. The similarity

threshold is set conservatively, to include all similar faces as well as many dissimilar ones.

This set is then reduced by applying the location and size measures in sequence. While

additional measures could be employed as well (and considerable experimentation would

be required to find a set that best corresponds to human ranking of face similarity), using

the intersection of several independent similarity measures is likely to be an improvement

over relying on only one such measure. The similarity thresholds are design parameters

that must be chosen by the experimenter.

3.4 Positive Mixture

When a linear representation is used, the desirability of restricting the weights to be pos-

itive has been noted by several researchers [7, 4]; [7] provides a discussion. Intuitively,

a convex combination of prototypes (corresponding to weights wk > 0, ∑wk = 1) should

result in a well behaved representation – without the positive constraint an exemplar might

sometimes be represented by a combination of prototypes with large positive and negative

weights in a canceling combination, leading to amplification of noise and poor reconstruc-

tion (Fig. 8). Although an unconstrained linear representation often works, as shown in

[14], in fact it can result in poor reconstruction in some cases (Fig. 7). The number of such

possibly undesirable representations increases as the number of training images increases

(i.e., the as linear representation tends towards being underdetermined or overcomplete),
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Figure 8: A signal A can be approx-

imated as a convex sum of a library

of similar signals such as B,C. The

same weighted sum may allow suc-

cessful reconstruction or extrapolation

(dashed lines). If unconstrained weights

are allowed, the signal can also be rep-

resented as a weighted combination of

many dissimilar signals such as D,E ,

by magnifying possibly incidental fea-

tures such as f ,g with large positive and

negative weights to match features of A.

The large weights also magnify noise,

and reconstruction may be impaired.

Figure 9: Restricting a linear repre-

sentation to only near neighbors of-

ten improves extrapolation. Left, origi-

nal image; middle, reconstructed mouth

extrapolated from similar faces only;

right, mouth extrapolated from a linear

mix of all faces. Also see Table I.

since the number of ways of representing an exemplar to within a specific accuracy in-

creases.

We use the non-negative least squares (NNLS) algorithm [17] to solve for the pos-

itive mixture representation of a given face. Target faces are first translated and scaled

to approximately match the mean position and size of the selected local neighborhood

prototype images, using a least squares fit. This makes it more likely that the target face

will lie within the convex hull of the prototypes.

3.5 Reconstruction

Given a target face with some obscured regions, using the procedure described in section

3.3.3 we select a subset of the training faces that (evaluated in the unobscured regions

only) are relatively similar to the target face f̂. Positive representation weights are chosen,

argmin
w

|| f̂−∑wkfk ||visible wk ≥ 0

again evaluating the match only in the unobscured regions.

Face shape and texture are correlated [8], so we fit the shape and texture in one step

rather than independently. In order to equalize the relative contributions of the shape and

texture components, the actual quantity minimized is

||∆S||+
σ2

s

σ2
t

||∆T ||



Figure 10: a),b),c) From left to right: original faces, target faces with obscured region,

and reconstruction results, for eye, mouth and nose regions.

with ∆S and ∆T begin the shape and texture errors in the visible regions and σ2
s ,σ2

t ,

being the variances of the shape and texture training data, respectively. The texture is

then warped into the neutral face shape, allowing it also to be approximated as a linear

combination of the same prototypes. Once known parts of the face are fit, the same linear

mixture ∑wkfk is used to extrapolate the unknown region(s).

4 Results and Conclusion

Some results are shown in Fig. 10. The left column of each group shows the original

face images, the middle column shows the target images with eyes (Fig. 10a), mouth

(Fig. 10b), or nose (Fig. 10c) regions obscured, and the right column shows our recon-

struction. These target images were not members of the training set. We see that the

procedure usually produces reasonable results, with some exceptions (in this figure the

reconstructed nose of the individual in the second row is too narrow, perhaps reflecting an

inadequate number of people with similar features in the database).

Local linear reconstruction also produces a demonstrable improvement in reconstruc-

tion compared with “global” reconstruction based on the entire training set: Table I shows

the reconstruction error for 600 face image outside the training set with obscured eye,

nose, and mouth regions (200 cases each).

Table 1:
mean error mean error local better

global fit local fit percent cases

mouth 1.19% 0.47% 74.0%

nose 1.16% 0.43% 70.5%

eyes 1.36% 0.88% 67.5%



In this table, the mean error columns report the average shape error between the ex-

trapolated image and the true image (not part of the training set), calculated as

||Snew −Sold||

||Sold||

and the third column shows the percentage of cases where the local representation re-

sults in a smaller reconstruction error than the global representation. Local linear recon-

struction also outperforms simple nearest neighbor reconstruction. For comparison, the

mean nearest neighbor shape errors for the mouth, nose, and eyes are 6.67%, 5.79%, and

10.62% respectively.

4.1 Conclusion

In this paper we summarize results of a psychological experiment showing that the con-

ditional correlations between different face regions in a face database are not merely the

result of the limited size of the database. We then demonstrate a model-based algorithm

that uses the correlations implicit in the face database to provide improved reconstruction

of obscured regions in novel faces. The reconstruction uses a positive-only mixture of

training faces, and the mixture is restricted to faces relatively similar to the target face

with similarity being defined by the intersection of several cascaded weak measures.

The choice of a positive-only (and typically convex) combination of basis functions

eliminates the possibility of large and canceling weights that could result in noise am-

plification or poor extrapolation in our reconstruction task. Excluding dissimilar faces

from the representation restricts it to a small region of face space where a simple linear

combination can be successful and helps prevent the interpolated result from falling in a

low probability “hole” in the face space. The resulting reconstruction algorithm provides

demonstrably lower reconstruction error on a set of 600 face images that were not part of

the training set.
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