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Abstract

This paper describes how graph-spectral methods can be used to transform
the node correspondence problem into one of point-set alignment. We com-
mence by using the ISOMAP algorithm to embed the nodes of a graph in a
low-dimensional Euclidean space. With the nodes in the graph transformed
to points in a metric space, we can recast the problem of graph-matching
into that of aligning the points. Here we use semidefinite programming to
develop a variant of the Scott and Longuet-Higgins algorithm to find point
correspondences. We experiment with the resulting algorithm on a number
of real-world problems.

1 Introduction

Graphs are general and powerful data structures that can be used to represent both phys-
ical objects and abstract concepts. The graph matching problem is a generic one in com-
puter vision, arising whenever a match must be found between the features of two related
patterns. There is a considerable literature on the problem of graph matching. Broadly
speaking, the work can be divided into three areas. The first of these is concerned with
defining a measure of relational similarity [18] [9] [6]. The second issue is that of how
to develop more principled statistical measures of similarity [20]. The third one is that
of optimization [14] [16]. However, the main challenge in graph matching is how to
deal with differences in node and edge structure. There have been successful attempts
to use spectral methods for both structure graph matching [2] [16], and for point pattern
matching [4] [10]. For instance Umeyama [16] has developed a least-squares approach
and showed how an eigendecomposition method can be used to recover the permutation
matrix by using a singular value decomposition of the adjacency matrices. Scott and
Longuet-Higgins [4], on the other hand, align point-sets by performing singular value de-
composition on a point association weight matrix. Shapiro and Brady [10] have reported
a correspondence method which relies on measuring the similarity the eigenvector of a
Gaussian point-proximity matrix.

Although Umeyama’s algorithm [16] is elegant in its formulation and can deal with
both weighted or unweighted graphs, it can not be applied to graphs which contain dif-
ferent numbers of nodes and for weighted graphs the method is susceptible weight errors.
One way to overcome these problems is to cast the problem of recovering correspondences
in a statistical setting using the EM algorithm [11]. However, the resulting algorithm is
time consuming because of its iterative character. In this paper we take an alternative view
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of spectral matching algorithms to develop an efficient method that is robust to differences
in structure. Spectral methods can be viewed as embedding the nodes of a graph in a space
spanned by the eigenvectors of the adjacency matrix. In the case of the Umeyama algo-
rithm [16], matching is effected by finding the transformation matrix that best aligns the
embedded points. The Shapiro and Brady [10] algorithm finds correspondences by seek-
ing the closest embedded points. Kosinov and Caelli [15] have improved this method by
allowing for scaling in the eigenspace.

Our aim in this paper is to seek an embedding of the nodes of a graph which allows
matching to be effected using simple point-pattern matching methods. In the mathematics
literature, there is a considerable body of work aimed at understanding how graphs can
be embedded on a manifold so as to minimize a measure of distortion. Broadly speaking
there are three ways in which the problem can be addressed. First, the graph can be
interpolated by a surface whose genus is determined by the number of nodes, edges and
faces of the graph. Second, the graph can be interpolated by a hyperbolic surface which
has the same pattern of geodesic (internode) distances as the graph [7]. Third, a manifold
can be constructed whose triangulation is the simplicial complex of the graph [1]. A
review of methods for efficiently computing distance via embedding is presented in the
recent paper of Hjaltason and Samet [5]. Recently, there has been considerable interest
in the pattern analysis community in how to embed complex relational data in a low
dimensional manifold. Collectively [8, 13, 3], these methods are known as manifold
learning theory. Their collective aim is to develop variants of the classical methods of
PCA and MDS, that can be used to better capture localised variations on the structure of
the data.

In this paper we investigate whether methods from manifold learning theory can be
combined with spectral graph theory to develop effective tools for graph structure match-
ing. The idea is to use manifold learning methods to embed the graphs in a low dimen-
sional coordinate space, and to use point-pattern matching techniques to find correspon-
dences between nodes. We proceed as follows. We commence by using a spectral method
to compute geodesic distances between nodes. This analysis relies on the heat kernel of
the graph. We then use a strategy similar to ISOMAP [8] to embed the graphs in a Eu-
clidean pattern space. This is done by applying MDS (Multidimensional Scaling) [17] to
the matrix of geodesic distances between nodes. Once embedded in this space, we can
use point-alignment methods to match the nodes of the graphs. To do this we develop a
variant of the Scott and Longuet-Higgins [4] algorithm. There are two problems with the
existing method. First, the correspondences are obtained from the matrix formed by tak-
ing the outer-product of the singular vectors of the point association matrix. This matrix
does not have a clear interpretation, and the resulting search for correspondences using
the maximum row and column entries is ad-hoc in nature. Second, the method breaks
down when the point-sets being matched are of very different sizes. Here rather than
performing singular value decomposition on the inter-point-set proximity matrix, we use
semidefinite programming to locate correspondences. By using SDP we overcome the
first of these problems, since it leads to a correspondence matrix which is doubly stochas-
tic, and hence has clear meaning. Second, the resulting matching method is more robust
to size difference than that of Scott and Longuet-Higgns.



2 Metric Embedding of Graphs

We are interested in the abstract problem of embedding the nodes of a graph into a Eu-
clidean space. Here we use Isomap [8] as a way to solve the low-distortion graph em-
bedding problem. The idea behind Isomap is to apply classical MDS [17] to the matrix
of geodesic distances between data-points. In this way the data is mapped from a high-
dimensional input space to the low-dimensional space of a nonlinear manifold. Although
the method was originally devised for dimensionality reduction, we can use it here for the
low-distortion graph embedding problem. Here we use a spectral method to approximate
the geodesic distances between nodes.

2.1 Geodesic Distances from Graph Spectra

In this section, we develop method for approximating the geodesic distance between
nodes by exploiting the spectral properties of the Laplacian matrix. To commence, sup-
pose that the graph under study is denoted byG = (V,E) whereV is the set of nodes
andE ⊆V×V is the set of edges. Since we wish to adopt a graph-spectral approach we
introduce the adjacency matrixA for the graph where

A(u,v) =
{

1 if (u,v) ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrixDeg, whose elements are given byDeg(u,u)=
∑v∈V A(u,v). From the degree matrix and the adjacency matrix we construct the Lapla-
cian matrixL = Deg−A, i.e. the degree matrix minus the adjacency matrix. The spectral
decomposition of the Laplacian matrix isL = ΦΛΦT whereΛ = diag(λ1,λ2, ...,λ|V|) is

the diagonal matrix with the ordered eigenvalues as elements andΦ = (φ1|φ2|....|φ|V|) is
the matrix with the ordered eigenvectors as columns.

We are interested in the heat equation associated with the Laplacian, i.e.∂ht
∂ t =−Lht

whereht is the heat kernel andt is time. The solution is found by exponentiating the
Laplacian eigenspectrum, i.e.ht = Φexp[−tΛ]ΦT . The heat kernel is a|V|× |V| matrix,
and for the nodesu andv of the graphG the resulting component is

ht(u,v) =
|V|
∑
i=1

exp[−λit]φi(u)φi(v) (2)

When t tends to zero, thenht ' I − Lt, i.e. the kernel depends on the local connec-
tivity structure or topology of the graph. If, on the other hand,t is large, thenht '
exp[−tλm]φmφT

m, whereλm is the smallest non-zero eigenvalue andφm is the associated
eigenvector, i.e. the Fiedler vector. Hence, the large time behavior is governed by the
global structure of the graph.

It is interesting to note that the heat kernel is also related to the path length distribution
on the graph. IfDk(u,v) is the number of paths of lengthk between nodesu andv then

ht(u,v) = exp[−t]
|V|2

∑
k=1

Dk(u,v)
tk

k!
(3)

The path-length distribution is itself related to the eigenspectrum of the Laplacian. By
equating the derivatives of the spectral and path-length forms of the heat kernel it is
straightforward to show that



Dk(u,v) =
|V|
∑
i=1

(1−λi)
kφi(u)φi(v) (4)

We can use this result to compute the distances between nodes in the graph. The distance
d(u,v) is found by searching for the minimum value ofk that results in a non-zero number
of paths between nodes.

2.2 Metric Embedding using Isomap

Our goal is to find a low-distortion or distortion-free embedding from the graph metric
space into a normed space. Here we use Isomap [8] as a way to solve the low-distortion
graph embedding problem. The idea behind Isomap is to apply classical MDS [17] to map
data points from their high-dimensional input space to low-dimensional coordinates of a
nonlinear manifold. The key contribution is hence to apply MDS to the pairwise distances
not in the input Euclidean space, but in the geodesic space of the manifold.

Although the method was originally devised for dimensionality reduction, we can use
it here for the low-distortion graph embedding problem. Viewed as an isometric feature
mapping, Isomap is a mappingf : X → Y from the observation spaceX to a Euclidean
feature spaceY that preserves as closely as possible the intrinsic metric structure of the ob-
servations, i.e. the distances between observations as measured along geodesic(shortest)
paths ofX [8]. The distortion in this embedding is nearly1.

For graphs, the embedding procedure is straightforward. We first construct the short-
est path distance matrixS for each graph. Each elementdu,v in S is the shortest path
distance between the pair of nodesu and v of the graph. We embed each graph in a
Euclidean space by performing MDS on the matrixS.

The pairwise geodesic distances between nodesd(u,v) are used as the elements of an
N×N dissimilarity matrixS, whose elements are defined as follows

S(u,v) =
{

d(u,v) if u 6= v
0 if u = v

(5)

The first step of MDS is to calculate a matrixT whose element with rowr and col-
umn c is given byT(r,c) = −1

2[d2(r,c)− d̂2(r, .)− d̂2(.,c) + d̂2(., .)], where d̂(r, .) =
1
N ∑N

c=1d(r,c) is the average dissimilarity value over therth row, d̂(.,c) is the similarly
defined average value over thecth column andd̂(., .) = 1

N2 ∑N
r=1 ∑N

c=1d(r,c) is the average
similarity value over all rows and columns of the similarity matrixT.

We subject the matrixT to an eigenvector analysis to obtain a matrix of embedding
co-ordinatesX. If the rank ofT is k,k≤ N, then we will havek non-zero eigenvalues.
We arrange thesek non-zero eigenvalues in descending order, i.e.l1 ≥ l2 ≥ . . . ≥ lk > 0.
The corresponding ordered eigenvectors are denoted by~ui wherel i is theith eigenvalue.
The embedding co-ordinate system for the graphs obtained from different views isX =
[~f1, ~f2, . . . , ~fs], where~fi =

√
l i~ui are the scaled eigenvectors. For the graph-node indexed

u, the embedded vector of co-ordinates is~xi = (Xu,1,Xu,2, ...,Xu,s)T .



3 Semidefinite Programming for Graph Matching

By applying Isomap to the two graphs to be matched, we obtain two point setsI and
J, containingm andn features respectively. We now follow a way similar to Scott and
Longuet-Higgins’ method. We regard the points inI andJ as lying in the same plane. We
then represent the ’proximities’ between the features inI and the features inJ. We use
the Gaussian form

Gi j = exp(−m2
i j /2δ 2) (6)

to compute the matrix of proximity weights. In the equation,mi j is the Mahalanobis
distance between two nodes, which is

m2
i j (M) = (xi −x j)

′Σ−1(xi −x j) (7)

andΣ is the point set covariance matrix. The use of the Mahalanobis metric instead of the
Euclidean distance has several advantages. First, it automatically accounts for the scaling
of the coordinate axes. Second, it corrects for correlation between the different features.
Third, it can provide curved as well as linear decision boundaries.

With an inter-graph node distance matrix to hand, then one way to find correspon-
dences is to use the Scott and Longuet-Higgins algorithm [4]. This involves performing
the singular value decomposition (SVD)G= TDU. The matrices ofT andU are orthogo-
nal. The matrixD contains the singular values along its diagonal in descending numerical
order. The final step is to compute the correlation betweenT ’s rows andU ’s columns,
giving an association matrixP = TEU, whereE is obtained by replacing each diagonal
element inD by a1. The elementPi j indicates the strength of attraction between feature
i ∈ I and j ∈ J. The rows ofP, index the features in the first graph, and its columns those
in the second graph. IfPi j is both the largest element in rowi and columnj then we
regard these features as being in one-to-one correspondence with one-another. IfPi j is
the greatest element in rowi but not the greatest in columnj, then we may regardi ∈ I
competing unsuccessfully for partnership withj ∈ J. Similar remarks apply ifPi j is the
greatest element in its column but not in its row [4].

However, the Scott and Longuet-Higgins method can prove to be sensitive to insta-
bilities in the singular vectors. For this reason we turn to semidefinite programming as
an alternative. The semidefinite programming problem(SDP) is essentially an ordinary
linear program where the nonnegativity constraint is replaced by a semidefinite constraint
on matrix variables. It is interesting to note that SDP is a special instance of a more
general problem class calledconiclinearprograms, where one seeks to minimize a linear
objective function subject to linear constraints and a cone constraint [19]. The process has
many applications, ranging from control theory to structural design. In particular, many
hard optimization problems can be relaxed to a problem with convex quadratic constraints
which, in turn, can be formulated as an SDP [12]. The handbook [21] has described the
application of SDP on combinatorial optimization, on nonconvex quadratic programming,
on eigenvalue and nonconvex optimization, etc.

We seek the matrix P that best correlates with G in the sense of maximizing the inner
product:

P : G = ∑
i

∑
j

Pi j Gi j = trace(PTG)



By using thelifting process, we define the variable matrixX

X =
(

1 xT

x xxT

)

wherex is obtained by vectorizing the matrixP and the problem can be transformed into
the following

min C•X (8)

s.t. Fi •X = ai i = (1...mn)
ROWj •X = b j j = (1....n)
COLk •X = ck k = (1....m)

X º 0

here we introduce the constraint matrices

Fi =




0 · · · 1
2 · · · 0

0 · · ·0 · · · 0
...

...
...

1
2 · · ·−1 · · · 0
...

...
...

...
0 · · ·0 · · · 0
0 · · ·0 · · · 0




i = (1...mn)

and

ROWi =




0 · · · 1
2 · · · 1

2 0
0 · · ·0 · · · 0
...

...
...

1
2 · · ·0 · · · 0
...

...
...

...
1
2 · · ·0 · · · 0
0 · · ·0 · · · 0
0 · · ·0 · · · 0




(i = 1...m)

the analogous matrices can be defined for column constraints.
In this case, we will finally obtain the association matrix P that maximizes tracePTG

from X, and the solution matrix will be limited to be doubly stochastic.

4 Experiments

In this section, we provide some experimental evaluation of the new graph-matching
method. There are two aspects to this study. First, we compare our method with some al-
ternative methods by using synthetic data. Second, we evaluate our method on real-world
data.



We commence with some synthetic data experiments. The aim is to evaluate how the
new method works under controlled structural corruption and to compare it with some al-
ternative methods. These alternatives are Shapiro and Brady [10] and Scott and Longuet-
Higgins’ [4] feature set matching methods. These two methods use coordinate informa-
tion for the feature points, and do not incorporate the graph structure information. We also
investigated Umeyama’s [16] method. In our method we are concerned with matching the
Delaunay triangulation of corner-features. Besides the coordinates of the feature points
the Delaunay graph will incorporate important structural information.

Our first experiment is based on synthetic data. We have generated random point-sets
containing 30 2D points. We use the position of the points to generate a Delaunay graph.
We have kept the number of points fixed and have added Gaussian errors to the point
positions. The parameter of the noise process is the standard deviation of the positional
jitter. In Figure 4, we show the fraction of correct correspondences as a function of the
noise standard deviation for our method, Shapiro and Brady’s [10] method, Umeyama’s
method and Scott and Longuet-Higgins’ method [4]. To take this study one step further
in Figure 3, we investigate the effect of structural noise. Here we have added a controlled
fraction of additional nodes at random positions and have recomputed the Deluanay tri-
angulations. We plot the fraction of correct correspondences as a function of the fraction
of added nodes. The plot compares the result of applying our method to the data, and
the results obtained using Scott and Longuet-Higgins’ method, and Shapiro and Brady’s
method. Since Umeyama’s algorithm can not handle graphs of different size, we have not
compared with this method. The main feature to note is that our method outperforms the
two alternatives. This means our method can solve the structure matching problem when
the graphs are of different size.

To take this study one step further, we perform some real-world data experiments. We
apply our matching method to two image sequences (MOVI and Desk). There are rotation,
scaling, and perspective distortion present. Example images from these sequences are
shown in Fig 1 and correspond to different camera viewing directions. The detected
feature points and their Delaunay triangulations are overlayed on the images. The first
four images are from the MOVI sequence and each contain about 140 nodes. The second
four images are from Desk sequence and each contain about 400 nodes.

In Fig 2 ,we test our method on some pairs of images. In Table 1 we summarize the
matching results for the MOVI houses. Here we list the number of nodes in the Delaunay
graphs, the number of correct correspondence, the number of correspondence errors, and
the number of points without correspondence. We also selected a pair of images which
contain the same number of corner points (image 1 and image 4 from MOVI sequence
140 nodes). Although the number of corners is the same, there are differences in the both
identities of the detected points and their structural arrangement. We compared these
images’ matching results by using our algorithm, the Umeyama’s algorithm, Scott and
Longuet-Higgins’ algorithm and Shapiro and Brady’s method. The compare results are
summarized in Table 2. From these results, it is clear that our new method is better than
these ones.



Images Points Correct False No

correspondence correspondence correspondence

house1 140 - - -

house2 134 112 8 14

house3 130 109 6 15

house5 140 110 8 22

Table 1: Experiments Results for MOVI House Sequence Images

Methods Correct False No

correspondence correspondence correspondence

Our Method 110 8 22

Umeyama 84 30 26

Scott and Longuett-Higgins 97 17 26

Shapiro and Brady 83 17 40

Table 2: Summary of Comparison of the Four Matching Algorithms
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Figure 1: Delaunay graphs overlayed on the house images

5 Conclusion and Future Work

This paper has presented an efficient approach to graph structure matching. The approach
is to first use the Isomap algorithm to embed the graphs in a Euclidean space by using
the geodesic distance between nodes. Each node is hence transformed to a point in co-
ordinate space. We match points corresponding to nodes in different graphs by using
Semidefinite Programming .

In our experiments we have demonstrated the feasibility of the proposed method and
have applied it to real-world data. Our algorithm can also be applied to other types of
data. We plan to extend our work in several directions these are: first apply this algorithm
to trees and try to solve the correspondence problem for trees, second to exploit the feasi-
bility of using the embedded vector representations for indexing purposes, third we plan
to use alternative methods for low distortion metric embedding and compare their effects.
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Figure 2: Our algorithm for CMU and MOVI house sequences
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Figure 3: Correspondences for three methods for graph matching with differing numbers
of nodes
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Figure 4: Comparison of four methods for graphs with same number of nodes
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