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Abstract

This paper addresses the issue of face representatiorscfat éxpres-
sion analysis and synthesis. In this context, a global appea model is
used and two bilinear factorization models are subsequpribosed to sep-
arate expression and identity factors from the global ammea parameters.
A feature extraction technique inspired from the abovegsgntations is then
proposed which consists in automatically computing théwegitidentity and
expression components that best adapt to an unknown tacget The pro-
posed representation can be seen as an alternative to thye/ods! gradient
matrix construction and iterative search and is exploitetthé context of fa-
cial expression control. Results are compared with the ob&gined using
bilinear factorization and linear regression in the spdo®AM parameters.

1 Introduction

Humans are able to communicate in a variety of ways, bedmasse of words, including
face gestures and facial expressions. As a matter of fagtlibie “poker face” evokes
an attitude of blank expression to prevent detection ohintghich suggests that facial
expressions constitute an essential modality in human aoriwation. Furthermore, Ek-
man and Friesen postulated that six basic emotional cagsgamre universally recognized
namely: joy, sadness, anger, disgust, fear and surpriseéS}eral other emotions and
many combinations of emotions have been studied but renmaioniirmed as universally
distinguishable.

This paper addresses the issue of face representationaciat éxpression analysis
and synthesis. In this context, a global appearance modskid and two bilinear factor-
ization models are subsequently proposed to separatessiqueand identity factors from
the global appearance parameters. A feature extractibnitpee inspired from the above
representations is then proposed which consists in auitaiigtcomputing the optimal
identity and expression components that best adapt to amowmktarget face. This rep-
resentation is based on the fact that SVD and PCA are closkeied and will be referred
to as Factorized Appearance Model (FAM). It can be seen aftemmative to the costly
Active Appearance Model (AAM) gradient matrix constructiand iterative search.

Facial expressions control is achieved through replacewfetne extracted expres-
sion factors. Both bilinear and FAM representations yieddpinteresting synthesis per-
formances in terms of visual quality of the synthetic fadedeed, synthetic open mouths

BMVC 2004 doi:10.5244/C.18.53



reconstruction either with or without teeth apparitionfibetter quality with bilinear and
FAM based synthesis than with linear regression basedayistfi], in the space of AAM
parameters.

2 Face appearance representation

In the context of face appearance representation, the éétppearance Model [2] is
a powerful tool allowing to extract from any unknown targaté, a set of appearance
parameters coding a synthetic face similar to the targetefims of minimum texture
error). AAM uses Principal Component Analysis to model eakcthe shape and texture
variations seen in a training set. Faces are aligned usiegerglized Procrustes analysis
and illumination is normalized via pixel grey level scaliagd translation. The global
appearance model is built by performing a separate PCA dnafdbe normalized shapes
and textures and one further PCA on the combined princiggdehand textures.

An alternative representation of the combined shape artdreexlata consists in di-
rectly combining the normalized training shapes and testuA single PCA is then per-
formed on the combined vectors. The training shapes arefdyopeighed to compensate
for the difference between pixel position and intensityuesl.

¢ = QL ( Wals o5 ) =Qzh; and fj~Qqc (1)
Qg is a truncated matrix of eigenvectors describing the ppacmodes of combined
shape and texture variations, aryds a vector of appearance parameters simultaneously
controlling the synthesized shape and texture. In practirea training set of 375 dif-
ferent expressive faces extracted from the CMU databas¢higdimension o€; varies
between 120 and 170 depending on the chosen representatiee-PCA or one-PCA).

Furthermore, in order to allow pose displacement of the mdde necessary to add
to the appearance vectey a pose vectop; controlling scale, orientation and position of
the appearance model in the image support.

The active appearance model automatically adjusts vectmgp to a target face by
minimizing the squared norm of a residual image, p) which is the texture difference
between the synthesized face and the corresponding refitie amage it covers. The
optimization scheme used in this paper is based on the fidstr draylor expansion de-
scribed in [2]. In this context, matricd®, andR; are computed, establishing the linear
relationships:

d(c) = —Rar(c,p) and &(p) = —Rt r(c,p) 2
A first order Taylor development gives the following solunt$o
orT ar\ torT orT ar\ torT
Ra= (%%) “g¢ andRe= (d—p d—p) I ®)

Computingg—rC andg—; is a heavy procedure conducted by numeric differentiatpn [
An iterative model refinement procedure is then used to dheeappearance model to-
wards the actual target face. In the following, the appezgamd pose vectors obtained
by this optimization procedure are denoted respectivetyaandp,.



The cop vector controls simultaneously the face shape and textwleding infor-
mation about the reconstructed face identity and faciatesqion [3]. However, it is
interesting to extract from the global appearance vecwcthiresponding expression fac-
tors. Indeed, adequate classification and control of sudiorfawould allow to perform
facial expression recognition and synthesis. In this partype, we propose to model the
mapping from expression and identity parameters to natacek using a bilinear factor-
ization model.

3 Bilinear modedlling

Bilinear models are two-factor models with the propertyt tiigir outputs are linear in
either factors when the other is held constant. They prosittefactor interactions by
allowing factors to modulate each other’s contributiondtiplicatively.

Two types of bilinear models already proposed in [6] are deed in this section,
namely the symmetric bilinear model and the asymmetrion&dr model. The general
symmetric model allows to represent, in the present word,iberaction between ex-
pressionag, and identitybop factors for a given appearance vectgg coding a face of
unknown identity and expression. The simpler asymmetridehcs expression specific
and requires expression to be known in advance.

3.1 Thesymmetric bilinear model

A bilinear symmetric model represents the interaction leetwexpressioagp and iden-
tity bop factors for a given observatian, according to:

Cop(K) = a5 Wibop (4)

wherecop(K) represents th&" component ofop andwy is an expression and identity
independent matrix characterizing their interaction.

The training set is composed of 70 face images with 10 difitgpersons showing each
of the 7 basic facial expressions extracted from the CMU esgive face database [5].
An observation matriy is then built by stacking the corresponding appearancexs&ct
Each column ofY contains the AAM appearance vectors of a specific person difith
ferent expressions (Neutral, Anger, Disgust, Fear, Jospriae, Sadness (Unhappiness))
whereas each row contains the appearance vectors of ab{herdons showing a specific
expression.
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Training a symmetric bilinear model is achieved with andtie procedure described
in [6] which decomposes the observation matrix into a set ekpression factora®, 10
identity factorsh' and weight matrices. In compact matrix form this can be written as:



Y= [w'TA]""B ©)

whereA andB represent the matrices of the stacked expresai@md identityb' factors.
Factorsa® andb' are essentially obtained by repeatedly applying SVD onessicely
reordered observation matrices to alternate the rolesaftpression and identity factors.

We set the dimensionality of expression factaiso be equal to the number of expres-
sions in the training sdt= 7 to allow maximum expressiveness, and the dimensionality
of the identity factord' to beJ = 10 which corresponds to the maximum number of
training identities.

To perform facial expression synthesis on an unknown tefeyet encoded bggp,
with an undetermined identity and expression, the bilisganmetric model is iteratively
adapted to the face thus allowing to extract the correspgnekpressiomgp and identity
bop factors [6].

To synthesize any novel expressiogi™while keeping identity intact, an artificial
appearance parameter is built by combining the extractextilg factorby, with the
desired expression factor learned from the trainingiet

Facial expression synthesis using a symmetric bilinearehyaoh an unknown face
with undetermined expression is shown on figure 1.
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Figure 1. Symmetric bilinear expression synthesis. a: 8iafiarce b: Symmetric bilinear
model fitting. Synthesis of c: Neutral, d: Anger, e: DisgdsEear, g: Joy, h: Surprise,
and i: Sadness expression.

3.2 Theasymmetric bilinear model

The expression specific asymmetric bilinear model decoegas appearance vect@[,
coding a face of known expressiod’‘and unknown identity into an expression specific
linear mapping/V® and an identity factobgp.

Training an asymmetric, expression-specific, bilinear ehadnsists in computing the
7 expression specific linear mapping& and 10 identity factor' which minimize the
total squared error between the actual and reconstructehadiions of the training face
set using SVD decomposition [6]. In compact matrix form it dee written as:

Y =WB )

whereW is a matrix containing the stacked expression-specifialimeappingdV¢ and
B represents the matrix of the stacked identity facbbrs

To synthesize a novel expressia@ ™ while keeping identity intact, the extracted iden-
tity factor bop is combined with the desired previously learned weightgion&y® :



Cop = W€ bop (9)

Facial expression synthesis, using an asymmetric bilimeatel, on an unknown neu-
tral face is shown on figure 2.
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Figure 2: Asymmetric bilinear expression synthesis. ag&aface b: Asymmetric bilin-

ear model fitting. Synthesis of ¢c: Neutral, d: Anger, e: Di&tgfi Fear, g: Joy, h: Surprise,
and i: Sadness expression.

It should be noted if we compare figures 1.b and 2.b that asyriiélinear model
fitting to an unknown face gives a more accurate representafithe target facial expres-
sion since this (neutral) expression is supposed @ fréori known. Symmetric bilinear
fitting shown on figure 1.b for the same target face simulatesxaression close to anger,
however the extracted identity factors are correct sincenadnneutral expression is im-
posed, the similitude of the synthetic output with the tafgee increases as shown on
figure 1.c.

4 A factorized face appearance representation

The bilinear appearance factorization described abowrfhteresting properties for
face and facial expression analysis and control. It allavsxtract from any target face
with known or unknown expression an identity-specific faetaclusively coding identity,
and an expression-specific factor exclusively coding esgiom. The extraction of such
factors offers undeniable advantages for synthesis whécbies immediate.

However, this approach relies on the factorization of thgeapance parameters ex-
tracted by AAM search, and thus depends strongly on the tquailiAAM adaptation.
Furthermore AAM search is a relatively heavy procedure Winézjuires offline construc-
tion of a gradient matrix estimated by numeric differentiaf2]. Indeed, building matrix
% in equation (2) implies adding systematic perturbationguery appearance mode
(there are 120 or 170 appearance modes depending on thenatlepsesentation) and
performing an average over the 375 faces of the training set.

This of course is time consuming and therefore it is of palticinterest to bypass
the R, learning procedure and the iterative AAM adaptation in otdeextract from any
unknown target face a set of sufficiently representativeofeaed appearance parameters.

In this context, we propose the Factorized Appearance M@#deW) which includes
the advantages of the bilinear model in terms of relevaatrination separation, and can
be seen as an interesting alternative to AAM in the sensdttHaesn't require iterative

appearance extraction and gradient matrix learning.



4.1 Theasymmetric FAM

The asymmetric FAM proposed here is inspired from the asytmenbilinear model
which requires one factor to be known in advance, and fronotiePCA AAM (equa-
tion (1)). In this paragraph, we will first address asymnedtAM building and adaptation
using an iterative procedure similar to AAM.

Immediate FAM fitting to an unknown target face is then adsidsand the results are
compared with iterative FAM fitting and with AAM fitting for aAAM model built using
the same training set as FAM.

On the one hand, in the one-PCA AAM, each centered trainirggisationh; is
obtained by direct concatenation of properly extractedigited and centered shape
Wy (sj —S) and textureg; — g.
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The appearance vectoy is subsequently computed through PCA of the training ob-
servations (see equation (1)).

On the other hand, the asymmetric bilinear model suggestathobservation vector,
containing embedded identity and expression informatt@am be decomposed into an
identity factor and an expression specific linear mappirigguSVD decomposition.

Let H be the matrix of all the centered training observationskstddn such a way
that each column corresponds to the 7 facial expressiongigéa identity, whereas each
row corresponds to all the identities showing a given exqioes
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SVD decomposition gives:
H=0B (12)

where rows of8 are the eigenvectors of the covariance maltidd andQ contains the
corresponding principal components. This last equationinds the matrix form of the
asymmetric bilinear model (Equation (8)), and thereforecam write for a given obser-
vation with expressioné” and identity ":

R — &% (13)
Equation (13) reminds the one-PCA AAM (equation (1)), if wate/Q® asQ, and

b' asc;.
Projecting a face of know expressiog’‘on the subspace spanned Q,‘/e gives the
appearance vectd? which is also the identity factor and thus allows to facterthe



appearance of an observation. Hence this model will be adddeto as the Factorized
Appearance Model (FAM).

AAM search can automatically adjust the appearance veggdo an unknown target
face according to the procedure described in [2]. This saaech algorithm can be ap-
plied to FAM in order to adapt the identity-specific appeasmparameters to an unknown
target face with a known expressiogl.* The optimal appearance vector obtairfgg cor-
responds to the identity factor of the target face. Thisatiee search procedure requires
much less time than standard AAM search due to the lower nuaflE®mponents i,
when compared toop (10 versus 120 to 170).

Expression specific asymmetric FAM iterative adaptatioaritaunknown joyful face
is shown in figure 3.d.

Figure 3: a: Unknown joyful face. b: AAM initializing c: AAM fting. d: Joy-specific
asymmetric FAM iterative fitting. e: Joy-specific asymmefAM immediate fitting.

However, it should be noted that AAM search seeks to minirttizedifference be-
tween the target and reconstructed textures of a given Tdwetarget texture is acquired
by sampling the region of the target face under the recottsitiishape at each iteration.
As the model adapts, the reconstructed shape tends to trehegee and landmark points
take their true positions around the main facial featuremsgquently, upon convergence,
the target texture is extracted using a relatively corrfeaps and can be considered as rep-
resentative of the true shape-free texture.

Nevertheless, face shape varies mainly with facial expyassand very little with
identities. In classical AAM search, the model is initigliz with a mean appearance
(identity and expression) and the shape varies along tragigias to match the real shape
of the target face. However, in the case of asymmetric espesspecific FAM search,
the model is initialized with the reah(priori known) expression of the target face and
a mean identity. The search algorithm gives the optimal afgree parameters which
are also the identity factors of the target face and the sse is not changed along the
iterations.

Thus it is reasonable to consider that starting from a copese through proper
eye detection for example, the initial shape is close endagdhe real target shape and
hence it is sufficient to sample the texture under this shapétiain an observation vector
h® with known expressione”. Projecting this observation vector onto the correspond-
ing expression-specific eigenspa@é allows to immediately extract the corresponding
identity-specific appearance vector:

Bop = [Q°7A° (14)



For the unknown joyful face of figure 3.a immediate asymmdtAM fitting through
extraction of the corresponding identity-specific appeegaector is shown on figure 3.e.

Standard AAM adaptation on the same target face and for alnbodeon the same
training set is also shown on figure 3.c for comparison. Thesges confirm that the
visual qualities of the 3 adaptations are comparable. ®sslt is very interesting in the
sense that model fitting to an unknown target face becomeediate.

Furthermore, the immediately extracted appearance vég;p'rs also an identity-
specific factor having very interesting properties for fgsis. Indeed, combining the
extracted identity factopyp with a given expression mappir@® allows to construct an
artificial face having the same identity and any desiredesgon €”. This procedure
is immediate and no iterations are required. Facial expmesynthesis on an unknown
neutral face is shown on figure 4.

Figure 4: Asymmetric FAM expression synthesis. a: Targetna¢face. Synthesis of
b: Neutral, c: Anger, d: Disgust, e: Fear, f: Joy, g: Surprésel h: Sadness expression.

However, the expression-specific asymmetric FAM requiargsiori knowledge of
the facial expression of a target face in order to allow imiaeddentity-specific appear-
ance parameters extraction. Since this information is lngdys available, we propose a
symmetric factorized appearance model which bypassesdhigraint.

4.2 Thesymmetric FAM

The symmetric bilinear model represents the interactidwéen expressioa® and iden-
tity b' factors for a given appearance veatfircoding a face with known expressiog’
and identity 1"

c® (k) = a®Twyh' (15)

wherec® (k) represents thé" component ot® andwy is an expression-independent,
identity-independent linear mapping characterizingrthgeraction. Extending this con-
cept to the matrix of observatiofba symmetric FAM can be built iteratively using SVD
decomposition. Of course, SVD decompoasition is performadguits relationship with
PCA which reduces the cost of computation since it allowsdgsomposition to be per-
formed on a small (10x10) covariance matrix instead of thgel#41419x10) observation
matrix H.

A=[Q"TANMB (16)
Symmetric FAM allows to extract from an observation with nokn expression and

identity an expression fact@p and an identity factof)op according to the iterative pro-
cedure described in [6]. As with asymmetric FAM adaptatiwa,can consider adapting



the model by extracting the corresponding expression aedtity parameters without
using the gradient matrix learning step required by stahéd&M search.

At each iteration, the target texture is re-sampled andedbilual error is computed.
If this error decreases then the identity and expressicofaextracted at this iteration
are retained, otherwise they are re-estimated.

Symmetric FAM search on an unknown face with unknown exjwess illustrated
on figure 5.

Figure 5: a: Unknown face with undetermined expression. yimr8etric FAM initial-
ization with mean identity and mean expression. c¢: Symm&®M immediate fitting.
d: AAM fitting.

Adapting the symmetric FAM to an unknown target face with ebedmined expres-
sion allows to extract the corresponding identity and esgimn factors and constitutes
a very interesting face representation for facial expossinalysis in the sense that it
bypasses the costly gradient matrix construction.

Combining the extracted identity factbg, with any desired expression factaf
allows to construct an artificial face having the same idgreind any desired expression
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h® (k) = a® wybop (17)

Facial expression synthesis on an unknown target face ofiavmk expression is
shown on figure 6.

Figure 6: Symmetric FAM expression synthesis. a: Unknowgetaface with undeter-
mined expression. Synthesis of b: Neutral, c: Anger, d: D8sge: Fear, f: Joy, g: Surprise,
and h: Sadness expression.

5 Comparison and conclusion

To compare the visual quality of the synthetic faces obthigi¢her with bilinear mod-
elling or with FAM we use a classical linear regression maaetelating facial expres-



sion intensity to appearance parameters [1]. For the saimérty set synthesis results for
an unknown neutral face are shown on figure 7.

c d e

Figure 7: Linear expression synthesis. a: Neutral target.fa: AAM adaptation. Syn-
thesis of ¢c: Anger, d: Disgust, e: Fear, f: Joy, g: Surprigéd,la Sadness expression.
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We conclude that the use of bilinear modelling for exprassymthesis enhances pho-
torealism since subtle face variations are better reptedghan with linear expression
modelling. In addition, the symmetric bilinear model allbw modify facial expression
on an unseen target face withaupriori knowledge of the shown expression. Facial ex-
pression recognition performance is also boosted by fifingodelling since it allows to
extract a set of expression-specific factors. Indeed, &cbrecognition rate of 83.33% is
achieved with an identity-specific asymmetric bilinear mlodRecognition is performed
using the maximum number of votes obtained for each exgnedactor extracted using
each of the 10 training identities. Euclidian distance Hadassification of AAM pa-
rameters projected in fisherspace yields only 67.59% coreeognition using the same
training and test images, and 30 trained humans achievedaa meeognition rate of
79.36% for the same test faces.
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