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Abstract

We describe a novel shape constraint technique which is incorporated into
a multi-stage algorithm to automatically locate features on the human face.
The method is coarse-to-fine. First a face detector is applied to find the ap-
proximate scale and location of the face in the image. Then individual feature
detectors are applied and combined using a novel algorithm known as Pair-
wise Reinforcement of Feature Responses (PRFR). The pointspredicted by
this method are then refined using a version of the Active Appearance Model
(AAM) search, which is tuned to edge and corner features. Thefinal output
of the three stage algorithm is shown to give much better results than any
other combination of methods. The method outperforms previous published
results on the BIOID test set [11].

1 Introduction

Accurate localisation of facial features is important in many computer vision applications.
For example in face recognition, accurate feature finding isnecessary to compare two
facial images. Facial feature finding can also be used to track the facial expressions of an
actor to automate the creation of computer graphic characters in films or computer games.

In our system, the face is located using the boosted cascadedclassifier method due to
Viola and Jones [17]. The whole face region predicts approximate locations for each facial
feature. These regions are searched using a suitable local detector. We then use PRFR to
combine the resulting candidates using pairwise probabilistic constraints, which encode
the reliability of each local detector. The predicted points are then refined using the Active
Appearance Model (or AAM). The AAM was originally developedby Cooteset al. [2].
However, the AAM method used in this paper is a variation due to Scottet al. [16], which
models edge and corner features instead of normalised pixelvalues. The edge/corner
AAM [16] is shown to outperform the original AAM formulation[2]. Using PRFR to
initialise the edge/corner AAM is shown to give superior results to using the edge/corner
AAM alone.

2 Background

The task of facial feature location has generally been addressed by algorithms that com-
bine shape and texture modelling. For example, Burlet al. [1] use multi-scale Gaussian
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derivative filters to detect facial features and then selectthe combination of features which
represent the most likely instance of a statistical shape model [6]. A similar approach is
adopted by Yow and Cipolla [18], except that shape is modelled using a grouping method
based on belief networks [14]. Hamouzet al. [9] use Gabor filters and test triplets of
appropriate configurations of features using a SVM model of facial appearance [13].

An alternative strategy for finding facial features is to treat face finding and feature
finding as two separate tasks. This coarse-to-fine approach is adopted by Jesorskyet
al. [11], who use a three stage method to find eye points. The first stage detects the whole
face using the Hausdorff distance [15] between edges found in the image and a model of
face edge locations. The second stage uses a smaller model ofthe eyes. The third stage
uses a Multi-Layer Perceptron (MLP) to refine the eye pupil locations. Similarly Feriset
al. [7] describe a two stage approach to facial feature finding based on Gabor Wavelet
Networks (GWNs). The first stage matches to the whole face, whilst the second stage
matches to individual features.

Another influential approach is the AAM search algorithm dueto Cooteset al. [2].
However, the AAM is only suitable for local search. The AAM combines shape and
texture in a PCA space, then searches a new image iterativelyby using the texture error
to drive the model parameters. Given a good enough initialisation the AAM converges to
the correct solution, but is otherwise prone to local minima.

The approach described in this paper combines the robustness of the Boosted Cascade
Face Detector [17], estimates feature locations using a novel shape constrained detection
technique and then refines the feature points using a variation of the AAM due to Scottet
al. [16]. The method is shown to give improved results compared to the authors’ previous
work (see Section 5.2) and outperform previous published results on the BIOID test set
(see Section 5.3).

3 Methodology

3.1 Face Finding

The face is localised in the image by applying the Boosted Cascade Face Detector due to
Viola and Jones [17]. This algorithm utilises a boosting method known as AdaBoost [8]
to select and combine a set of features, which can discriminate between face and non-
face image regions. The detector is run over a test image and the image window with the
highest face score1 deemed to be the location of the face in the image.

3.2 Feature Detectors

Detectors are built for 17 facial features using a manually labelled training set consisting
of 1055 images collected in our lab. An example marked up faceis shown in Figure 1(a).
Images patches are extracted around each manually labelledpoint (excluding the chin
and temples) and used to train a Boosted Cascade Detector foreach individual feature.
Example training patches are shown in Figure 1(b). The patches are sampled 5 times with
small random rotations and scale changes, to provide 5275 positive training examples for
each feature detector.

1Calculated by summing the classifier scores from each level of the cascade



(a) Example training image (b) Example feature detec-
tor training patches

Figure 1: Example of feature patch training set

During training a bounding box is computed on the range of each feature location
within the region found by the face detector (for successfulsearches). Given the region
computed by the face detector, feature detection can then proceed by merely searching
within the bounded regions and the best match taken as the location of each feature.
However, as shown in the authors’ previous work [4], such an approach does not work
well. Search accuracy can only be improved by employing a shape constraint to force the
configuration of points returned by the feature detectors toform a valid face shape [4] [5].
Typically this is achieved using a statistical shape model [6].

3.3 PRFR Model

In this paper a novel shape constraint is employed, known as Pairwise Reinforcement of
Feature Responses (PRFR). This method does not use an explicit shape model, rather it
models shape implicitly by learning the pairwise distribution of all true feature locations
relative to the best match of each individual feature detector. When searching, the location
of each feature is predicted by multiple detectors. The combination of multiple predic-
tions makes the final prediction of each feature point more robust compared to individual
feature search.

The pairwise distributionPi j (xi |x j) is defined as the distribution of the true location
of featurei given the best match for feature detectorj in the reference frame defined
by the whole face region. In practice we use histograms of theform Hi j (xi − x j) as
an approximation toPi j (xi |x j). These distributions must be learnt for all possible pairs
of feature detector and true feature locations. There are 17feature detectors, trained to
search for 17 feature locations, therefore 289 (=17x17) pairwise histograms are required.

Learning of histograms is achieved by applying the global face detector, followed by
unconstrained feature detection, to a verification set of face images. For each verification
image, the true location of all features within the global candidate frame is recorded along
with the best match of each feature detector. The ensemble oftrue feature locations and
detector matches allows relative histogramsHi j to be computed for the distribution of true
feature locationi relative to detectorj.

Relative histogramsHi j for the right eye pupil location, are shown in Figure 2. Each



diagram plots the distribution of true feature locations relative to the best match of a
feature detector (marked with a cross). For example, the spread of true right eye locations
relative to a right eye detection are shown in Figure 2(a). The spread of right eye locations
relative to a left eye detection are shown in Figure 2(b).

(a) Right eye de-
tector

(b) Left eye de-
tector

(c) Left mouth
corner detector

(d) Inner right
eye corner
detector

Figure 2: Right eye pupil location histograms relative to the best match of four different
feature detectors (black pixels indicate peaks in each histogram)

Using non-parametric histograms allows realistic pairwise statistics to be modelled
and makes no prior assumptions as to the distribution of any feature location relative
to any particular feature detector. For example Figures 2(c) and 2(d) show multi-modal
histograms which encode variation in the right eye pupil location relative to the more
noisy left mouth corner and inner right eye corner feature detectors. This information
may have been lost if simpler single Gaussian modelling had been used.

One disadvantage of using histograms is that a reasonably large amount of training
data is required to obtain a representative sample of feature location/feature detection
pairs. The number of samples required increases with the number of histogram bins. In
our experiments, 100x100 bins were used for the whole candidate frame region, trained
with 500 verification faces. It may be possible to approximate the distribution histograms
using a Gaussian Mixture Model (GMM), if insufficient verification data is available.
This would also produce a more compact model. However, in this section we make no
Gaussian assumptions.

3.4 PRFR Search

Given an order list of detections for each feature detector we wish to predict the location
x̂i of featurei by combining feature responses with the pairwise distributionsPi j (xi |x j) as
follows:-

x̂i = argmax
n

∑
j=1

k

∑
t=1

Pi j (xi |q jt ) (1)

Hereq jt is the position of thetth maxima in the response image for feature detector
j. We sum the probabilities (effectively voting) rather thanmultiplying, as this generally
gives more robust results. Multiplication would be appropriate if all features were inde-
pendent, which in this case they are not. Note that the prior distribution P(q jt ) of each



feature detector is ignored here and only raw matches to the current face region are used
to predict the final feature locations (x̂i).

The firstk matches of each feature detectorj are used instead of just the best match.
This helps to protect against spurious false matches and provides more robust results. By
empirical testing a suitable value ofk is found to be 3. Similar results are obtained, using
any value ofk in the range(3,10). However taking more detections into account increases
the time taken to perform PRFR.

In practice the pairwise distributionsPi j (xi |x j) are represented by relative histograms
Hi j (xi − x j). When searching, the PRFR algorithm projects the topk feature locations
from the j th detector into the histogram frame. Given the feature locationsq jt the relative
histogramHi j can be used to predict distributionsDi jt of likely locations for featurei. The
most likely locationx̂i is determined by simply summing over all predicted distributions
Di jt and selecting the highest ranking pixel in the histogram frame. The predicted feature
locationsx̂i in the histogram frame can then be mapped back to the corresponding location
in the image being searched.

3.5 AAM Refinement

The AAM algorithm [2] can also be used to predict feature locations. The method at-
tempts to match a shape and texture model to an unseen face by adapting the parameters
of a linear model which combines shape and texture. The basicsearch algorithm is de-
scribed by Cooteset al.[3] and is compared with a recent variation due to Scottet al.[16].
In this new approach, instead of normalising the raw pixel values within the region mod-
elled by the AAM, four values are computed for each pixel. Thefour values areg′x the
normalised gradient in thex direction,g′y the normalised gradient in they direction,e′ a
measure of “edgeness” andc′ a measure of “cornerness”. A method based on the Harris
corner detector [10] is used to compute the edgee′ and corner valuesc′. For the precise
details see Scottet al. [16].

4 Experiments

4.1 Test Data

The accuracy of feature search is assessed by applying search algorithms to a publicly
available test set known as the BIOID database2 (which is completely independent of the
training set). This data set was first used by Jesorskyet al. [11], to evaluate face detection
and eye finding algorithms, but is now available with a set of 20 manually labelled feature
points. The BIOID images consist of 1521 images of frontal faces taken in uncontrolled
conditions using a web camera within an office environment. The face is reasonably
large in each image, but there is background clutter and unconstrained lighting. Example
images from the BIOID data set are shown in Figure 3.

Some faces lie very close to the edge of the image in the BIOID data set, which
prevents detection using the Boosted Cascade Face Detector. To avoid such edge effects,
each BIOID image was extended by replicating edge pixels to create an artificial border
around each image.

2http://www.humanscan.de/support/downloads/facedb.php



(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 3: Examples from the BIOID test set

4.2 Proximity Measure

To assess the accuracy of feature detection the predicted feature locations are compared
with manually labelled feature points. The average point topoint error (me) is calculated
as follows.

me = 1
ns

i=n
∑

i=1
di (2)

Wheredi are the point to point errors for each individual feature location ands is the
known inter-ocular distance between the left and right eye pupils. Heren is the number
of feature points modelled. The search errorme computed over the 17 features shown in
Figure 1 is referred to asme17. The search error can also be computed for the eye pupils
and mouth corners only, when it is referred to asme4.

5 Results

5.1 Comparison of Individual Methods

Figure 4(a) plots the cumulative distribution ofme17 over the BIOID test set and shows
that the PRFR algorithm outperforms both unconstrained search and average point pre-
diction. For example, using a proximity threshold ofme17 < 0.15 the PRFR algorithm
is successful in 96% of cases, compared to 85% using average point prediction. Uncon-
strained feature detection performs very poorly achievinga success rate of only 68%.

Figure 4(b) compares the edge/corner texture sampling AAM (described in section 3.5)
with the basic AAM texture sampling method, initialised with the average points. The
graph shows that withme17 = 0.15 the edge/corner AAM achieves as success rate of
95%, compared to a success rate of 90% using the basic AAM. Theedge/corner AAM
is more successful than the basic AAM at all values ofme17, so is clearly superior. Both
AAM approaches improve on the search accuracy of average point prediction.

Figure 4(c) compares the search accuracy of the edge/cornerAAM, the PRFR method
and PRFR followed by edge/corner AAM refinement. Figure 4(c)shows that the PRFR
followed by edge/corner AAM search is far superior to any other method. For example
with me17 = 0.1, the PRFR+AAM search is successful for 96% of the BIOID images,
whilst at the same accuracy threshold, both the PRFR method alone and the edge/corner
AAM initialised with average points achieve only 87% success rate.
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Figure 4: Search accuracy (me17) of various methods when applied to the BIOID test set

Therefore the edge/corner AAM is able to refine the feature points predicted using the
PRFR method to improve search accuracy. Initialising the edge/corner AAM using PRFR
is much more effective than initialising using average point prediction. Some example
search results and associated search errors using the PRFR+AAM method are shown in
Figure 7.

5.2 Comparison with Previous Results

The PRFR+AAM search is compared with the authors’ previous methods. For exam-
ple, Figure 5(a) compares PRFR+AAM search with the search optimised search (SOS)
algorithm described in [5], using theme17 distance measure3. Figure 5(b) compares
PRFR+AAM search with the combinatoric shape search (CSS) algorithm described in
[4]. The CSS method only predicts the location of four features (the eye pupils and mouth
corners), so theme4 distance measure is used in Figure 5(b).

Figure 5(a) shows that withme17 = 0.1 PRFR+AAM achieves a success rate of 96%,
whilst the SOS algorithm only achieves 85%. The PRFR+AAM is more successful
at all values ofme17, so is clearly superior to SOS. Similarly, Figure 5(b) showsthat
PRFR+AAM is superior to the CSS algorithm at all values ofme4.

5.3 Comparison with Other Published Results

Jersorskyet al. [11] first introduced the BIOID data set and published results on the eye
pupil finding accuracy of their algorithm, which uses a face matching method based on
the Hausdorff distance followed by a Multi-Layer Perceptron eye finder. Jesorskyet al.
also present eye location accuracy results on the XM2VTS data set. Recently Hamouzet
al. [9] also presented eye finding results on the BIOID and XM2VTStest sets, using a
method which combines Gabor based feature detections to produce a list of face hypothe-
ses, which are then tested using a SVM face model. These two methods can be compared
with the PRFR+AAM algorithm for the task of eye pupil detection.

3Note, the equivalent graph in [5] is slightly different because it ignores cases where the global face detector
fails.
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Figure 5: Comparison with authors’ previous search resultson the BIOID test set

Jersorskyet al. [11] introduce a distance measure for eye search, which records the
maximum point to point error over both eye point predictions, normalised by the known
inter-ocular separation. We refer to this distance measureasm̂e2. Figure 6(a) plots ˆme2

for the first two sessions of the XM2VTS data set [12], which consists of 1180 images.
Similarly Figure 6(b) plots ˆme2 for all three methods on the BIOID data set.
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Figure 6: Comparison with previously published results foreye finding on the
XM2VTS [12] and BIOID test sets [11]

Figure 6(b) shows that when applied to the BIOID images, the PRFR+AAM is more
successful than the Jesorsky method for all values of ˆme2. For example with ˆme2 = 0.1, the
PRFR+AAM search finds 96% of faces successfully compared to 79% using the Jesorsky
approach. The Hamouz4 method is more likely to find eye pupils very accurately (e.g.

4Here we take the best face match only,not the top 30 hypotheses, which are used by Hamouzet al. [9] for
face verification.



m̂e2 < 0.05), but is not very robust, sometimes failing to find the facecompletely and is
the worst performing method on the BIOID data set for ˆme2 > 0.1.

However the results are very different for the XM2VTS data set. Figure 6(a) shows
that the accuracy of all three eye finding methods are very similar on the cleaner XM2VTS
images. Withm̂e2 = 0.1, the Hausdorff+MLP search, Hamouz approach and PRFR+AAM
achieve a success rate of around 93% and give very similar performance for all values of
m̂e2. This indicates that the Hausdorff+MLP and Hamouz methods work well on rela-
tively clean images under controlled conditions (e.g. the XM2VTS data set), but are less
successful on the more complicated BIOID data set. The multi-stage Boosted Cascade
Face Detector + PRFR+AAM search can find eye pupils reliably on both data sets.

The multi-stage approach is reasonably efficient requiring∼1400ms to search a BIOID
image using a relatively elderly PC (500Mhz PII processor).The PRFR step is the most
time consuming operation requiring∼800ms, due to the summation of 867 histograms
(17*17*3) when predicting feature locations.

6 Summary and Conclusions

A multi-stage approach to facial feature detection has beenpresented, combining the
Boosted Cascade Face Detector [17] , a novel constrained feature detection method (PRFR)
and a refinement of the predicted points using the edge/corner AAM [16]. The method is
found to predict accurate feature locations on the BIOID data set (see Figure 4(c)). This
three stage approach is shown to outperform the authors’ previous results (see Figure 5).
When used to predict eye pupil locations only, the method is shown to give superior per-
formance to results published by Jesorskyet al. [11] and Hamouzet al. [9] on the BIOID
data set (see Figure 6(b)).

The edge/corner AAM approach is shown to outperform the original AAM approach
when searching the BIOID data set, initialised using average feature points predicted
from the Boosted Cascade Face Detector (see Figure 4(b)). However, it is also shown
that far superior results can be obtained by initialising the edge/corner AAM with points
predicted by PRFR (see Figure 4(c)). This indicates that theAAM needs a very good
initialisation to avoid inaccurate matching due to false minima. PRFR point prediction is
much more accurate than average point prediction, so more false minima can be avoided
and the overall search performance improved when using PRFR+AAM. Some example
search results are shown in Figure 7.

In conclusion, the three stage method described gives accurate point predictions for
17 feature locations, is reasonably efficient and able to cope with a challenging test set,
which contains unconstrained lighting variation. The technique is very applicable to the
tasks of face/expression recognition and automatic labelling of human faces.
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Figure 7: Example searches and search errors (me17), using PRFR+edge/corner AAM on
the BIOID data set. Here “+”= manually labelled ground truthand “x”= points predicted
using PRFR+edge/corner AAM search.


