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Abstract

We describe a novel shape constraint technique which igpocated into
a multi-stage algorithm to automatically locate featuregte human face.
The method is coarse-to-fine. First a face detector is appli¢ind the ap-
proximate scale and location of the face in the image. Théritual feature

detectors are applied and combined using a novel algorithowhk as Pair-
wise Reinforcement of Feature Responses (PRFR). The poiedécted by
this method are then refined using a version of the Active Apgrece Model
(AAM) search, which is tuned to edge and corner features. fiflad output

of the three stage algorithm is shown to give much betterlteethan any
other combination of methods. The method outperforms presvpublished
results on the BIOID test set [11].

1 Introduction

Accurate localisation of facial features is important immpaomputer vision applications.
For example in face recognition, accurate feature findingelsessary to compare two
facial images. Facial feature finding can also be used té& trecfacial expressions of an
actor to automate the creation of computer graphic chasaictélms or computer games.

In our system, the face is located using the boosted cascatsifier method due to
Viola and Jones [17]. The whole face region predicts appna locations for each facial
feature. These regions are searched using a suitable leieaitdr. We then use PRFR to
combine the resulting candidates using pairwise prolsigilconstraints, which encode
the reliability of each local detector. The predicted psete then refined using the Active
Appearance Model (or AAM). The AAM was originally developbyg Cooteset al. [2].
However, the AAM method used in this paper is a variation dugdottet al. [16], which
models edge and corner features instead of normalised pékaés. The edge/corner
AAM [16] is shown to outperform the original AAM formulatiof2]. Using PRFR to
initialise the edge/corner AAM is shown to give superiomulesto using the edge/corner
AAM alone.

2 Background

The task of facial feature location has generally been adédtby algorithms that com-
bine shape and texture modelling. For example, Btdl. [1] use multi-scale Gaussian
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derivative filters to detect facial features and then sefectombination of features which
represent the most likely instance of a statistical shapéei{6]. A similar approach is
adopted by Yow and Cipolla [18], except that shape is modeing a grouping method
based on belief networks [14]. Hamoer al. [9] use Gabor filters and test triplets of
appropriate configurations of features using a SVM modehofad appearance [13].

An alternative strategy for finding facial features is taatréace finding and feature
finding as two separate tasks. This coarse-to-fine appr@aedapted by Jesorslet
al. [11], who use a three stage method to find eye points. The firgegletects the whole
face using the Hausdorff distance [15] between edges fauttitiimage and a model of
face edge locations. The second stage uses a smaller matiel @jes. The third stage
uses a Multi-Layer Perceptron (MLP) to refine the eye pumidtmns. Similarly Ferigt
al. [7] describe a two stage approach to facial feature findirgptéaon Gabor Wavelet
Networks (GWNSs). The first stage matches to the whole facelstMie second stage
matches to individual features.

Another influential approach is the AAM search algorithm do€ooteset al. [2].
However, the AAM is only suitable for local search. The AAMnabines shape and
texture in a PCA space, then searches a new image iteraliyalging the texture error
to drive the model parameters. Given a good enough iniitddis the AAM converges to
the correct solution, but is otherwise prone to local minima

The approach described in this paper combines the robssthdse Boosted Cascade
Face Detector [17], estimates feature locations using alrstape constrained detection
technique and then refines the feature points using a \ariafithe AAM due to Scotéet
al. [16]. The method is shown to give improved results compavdte authors’ previous
work (see Section 5.2) and outperform previous publishedliz on the BIOID test set
(see Section 5.3).

3 Methodology
3.1 Face Finding

The face is localised in the image by applying the Boosteat&ites Face Detector due to
Viola and Jones [17]. This algorithm utilises a boostingmetknown as AdaBoost [8]
to select and combine a set of features, which can discrimibetween face and non-
face image regions. The detector is run over a test imagehanidtage window with the
highest face scotedeemed to be the location of the face in the image.

3.2 Feature Detectors

Detectors are built for 17 facial features using a manualbelled training set consisting
of 1055 images collected in our lab. An example marked upifasbhown in Figure 1(a).

Images patches are extracted around each manually lalpalad (excluding the chin

and temples) and used to train a Boosted Cascade Detecteadbrindividual feature.

Example training patches are shown in Figure 1(b). The patehe sampled 5 times with
small random rotations and scale changes, to provide 525ifvgotraining examples for

each feature detector.

1Calculated by summing the classifier scores from each leveleotascade
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(a) Example training image (b) Example feature detec-
tor training patches

Figure 1: Example of feature patch training set

During training a bounding box is computed on the range ohdaature location
within the region found by the face detector (for successéarches). Given the region
computed by the face detector, feature detection can thmreed by merely searching
within the bounded regions and the best match taken as tla¢idacof each feature.
However, as shown in the authors’ previous work [4], such gpr@ach does not work
well. Search accuracy can only be improved by employing pesleanstraint to force the
configuration of points returned by the feature detectofsrtm a valid face shape [4] [5].
Typically this is achieved using a statistical shape mo@l [

3.3 PRFR Model

In this paper a novel shape constraint is employed, knowraaw/iBe Reinforcement of
Feature Responses (PRFR). This method does not use aritestpdipe model, rather it
models shape implicitly by learning the pairwise distribatof all true feature locations
relative to the best match of each individual feature dete®/hen searching, the location
of each feature is predicted by multiple detectors. The dpation of multiple predic-
tions makes the final prediction of each feature point mobesbcompared to individual
feature search.

The pairwise distributio;j (x;|x;) is defined as the distribution of the true location
of featurei given the best match for feature detecjoin the reference frame defined
by the whole face region. In practice we use histograms offth@ H;; (x; — xj) as
an approximation td; (xj|x;). These distributions must be learnt for all possible pairs
of feature detector and true feature locations. There aredtdre detectors, trained to
search for 17 feature locations, therefore 289 (=17x1fnpse histograms are required.

Learning of histograms is achieved by applying the globed fdetector, followed by
unconstrained feature detection, to a verification seta# fmmages. For each verification
image, the true location of all features within the globalaidate frame is recorded along
with the best match of each feature detector. The ensembiaefeature locations and
detector matches allows relative histogratisto be computed for the distribution of true
feature location relative to detectoy.

Relative histogramsi;; for the right eye pupil location, are shown in Figure 2. Each



diagram plots the distribution of true feature locationkatiee to the best match of a
feature detector (marked with a cross). For example, theasiof true right eye locations
relative to a right eye detection are shown in Figure 2(ak gpread of right eye locations
relative to a left eye detection are shown in Figure 2(b).

(a) Right eye de- (b) Left eye de- (c) Left mouth (d) Inner right
tector tector corner detector eye corner
detector

Figure 2: Right eye pupil location histograms relative te best match of four different
feature detectors (black pixels indicate peaks in eachdram)

Using non-parametric histograms allows realistic paieasgatistics to be modelled
and makes no prior assumptions as to the distribution of aajufe location relative
to any particular feature detector. For example Figurey &td 2(d) show multi-modal
histograms which encode variation in the right eye pupibtamn relative to the more
noisy left mouth corner and inner right eye corner featureaers. This information
may have been lost if simpler single Gaussian modelling feeh lused.

One disadvantage of using histograms is that a reasonalgly éanount of training
data is required to obtain a representative sample of fedtwation/feature detection
pairs. The number of samples required increases with théeuof histogram bins. In
our experiments, 100x100 bins were used for the whole cataliiame region, trained
with 500 verification faces. It may be possible to approxartae distribution histograms
using a Gaussian Mixture Model (GMM), if insufficient verditton data is available.
This would also produce a more compact model. However, ;ghction we make no
Gaussian assumptions.

3.4 PRFR Search

Given an order list of detections for each feature detectonwsh to predict the location
X; of featurei by combining feature responses with the pairwise distiginsts (x;[x;) as
follows:-

n k
% = argmax ZP.J' (xilajt) @)
]=1t=

Hereqj: is the position of the!" maxima in the response image for feature detector
j- We sum the probabilities (effectively voting) rather thaualtiplying, as this generally
gives more robust results. Multiplication would be appraier if all features were inde-
pendent, which in this case they are not. Note that the pistriloution P(q;;) of each



feature detector is ignored here and only raw matches toutrert face region are used
to predict the final feature location%;).

The firstk matches of each feature detecfjare used instead of just the best match.
This helps to protect against spurious false matches anid@®more robust results. By
empirical testing a suitable value lofs found to be 3. Similar results are obtained, using
any value ok in the rangd3,10). However taking more detections into account increases
the time taken to perform PRFR.

In practice the pairwise distributiori®; (xi|x;) are represented by relative histograms
Hij (xi —xj). When searching, the PRFR algorithm projects thekdgature locations
from the ji" detector into the histogram frame. Given the feature locati|j; the relative
histogramH;; can be used to predict distributioDs; of likely locations for featuré. The
most likely locationX; is determined by simply summing over all predicted disttitms
Dij: and selecting the highest ranking pixel in the histogrammé&aThe predicted feature
locationsk; in the histogram frame can then be mapped back to the comdspplocation
in the image being searched.

3.5 AAM Refinement

The AAM algorithm [2] can also be used to predict feature timses. The method at-
tempts to match a shape and texture model to an unseen fackaptrey the parameters

of a linear model which combines shape and texture. The Isasich algorithm is de-
scribed by Cootest al.[3] and is compared with a recent variation due to Seb#l.[16].

In this new approach, instead of normalising the raw pix&leswithin the region mod-
elled by the AAM, four values are computed for each pixel. Tdwe values arey, the
normalised gradient in thx:direction,gg, the normalised gradient in thedirection,€ a
measure of “edgeness” anta measure of “cornerness”. A method based on the Harris
corner detector [10] is used to compute the eelgend corner values'. For the precise
details see Scodt al.[16].

4 Experiments
4.1 TestData

The accuracy of feature search is assessed by applyinchsalgarithms to a publicly
available test set known as the BIOID dataBBgsehich is completely independent of the
training set). This data set was first used by Jesoesky.[11], to evaluate face detection
and eye finding algorithms, but is now available with a set@franually labelled feature
points. The BIOID images consist of 1521 images of frontaéfataken in uncontrolled
conditions using a web camera within an office environmenle Tace is reasonably
large in each image, but there is background clutter andnsirained lighting. Example
images from the BIOID data set are shown in Figure 3.

Some faces lie very close to the edge of the image in the BIGdia det, which
prevents detection using the Boosted Cascade Face Deféatavoid such edge effects,
each BIOID image was extended by replicating edge pixelsdate an artificial border
around each image.

2http://iwww.humanscan.de/support/downloads/facedb.php



(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 3: Examples from the BIOID test set

4.2 Proximity Measure

To assess the accuracy of feature detection the predicataréelocations are compared
with manually labelled feature points. The average poimdint error () is calculated
as follows.

me = i;d %)

Whered; are the point to point errors for each individual featureattan andsis the
known inter-ocular distance between the left and right aygilp. Heren is the number
of feature points modelled. The search emgrcomputed over the 17 features shown in
Figure 1 is referred to a®e;7. The search error can also be computed for the eye pupils
and mouth corners only, when it is referred taas.

5 Results

5.1 Comparison of Individual Methods

Figure 4(a) plots the cumulative distribution w§; 7 over the BIOID test set and shows
that the PRFR algorithm outperforms both unconstrainedcheand average point pre-
diction. For example, using a proximity thresholdraf;7 < 0.15 the PRFR algorithm
is successful in 96% of cases, compared to 85% using avermgeppediction. Uncon-
strained feature detection performs very poorly achiegisgccess rate of only 68%.

Figure 4(b) compares the edge/corner texture sampling Adédqribed in section 3.5)
with the basic AAM texture sampling method, initialised lwithe average points. The
graph shows that witlmg;7 = 0.15 the edge/corner AAM achieves as success rate of
95%, compared to a success rate of 90% using the basic AAMeidige/corner AAM
is more successful than the basic AAM at all valuesngf7, so is clearly superior. Both
AAM approaches improve on the search accuracy of average padiction.

Figure 4(c) compares the search accuracy of the edge/chAidr the PRFR method
and PRFR followed by edge/corner AAM refinement. Figure 4f@ws that the PRFR
followed by edge/corner AAM search is far superior to anyeottmethod. For example
with mg7 = 0.1, the PRFR+AAM search is successful for 96% of the BIOID iemg
whilst at the same accuracy threshold, both the PRFR metlboé and the edge/corner
AAM initialised with average points achieve only 87% succeste.
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Figure 4: Search accuracyng; 7) of various methods when applied to the BIOID test set

Therefore the edge/corner AAM is able to refine the featumetp@redicted using the
PRFR method to improve search accuracy. Initialising tlgegmbrner AAM using PRFR
is much more effective than initialising using average pgirediction. Some example
search results and associated search errors using the PRMRmethod are shown in
Figure 7.

5.2 Comparison with Previous Results

The PRFR+AAM search is compared with the authors’ previoeshods. For exam-
ple, Figure 5(a) compares PRFR+AAM search with the seartimiged search (SOS)
algorithm described in [5], using thew; distance measute Figure 5(b) compares
PRFR+AAM search with the combinatoric shape search (CSfyi#thm described in
[4]. The CSS method only predicts the location of four feesuithe eye pupils and mouth
corners), so theny distance measure is used in Figure 5(b).

Figure 5(a) shows that witing;7 = 0.1 PRFR+AAM achieves a success rate of 96%,
whilst the SOS algorithm only achieves 85%. The PRFR+AAM isrensuccessful
at all values ofme;7, so is clearly superior to SOS. Similarly, Figure 5(b) shadtest
PRFR+AAM is superior to the CSS algorithm at all valuesrgf.

5.3 Comparison with Other Published Results

Jersorskyet al. [11] first introduced the BIOID data set and published resatt the eye
pupil finding accuracy of their algorithm, which uses a facgtching method based on
the Hausdorff distance followed by a Multi-Layer Perceptaye finder. Jesorskst al.
also present eye location accuracy results on the XM2VT8 sktt Recently Hamowet
al. [9] also presented eye finding results on the BIOID and XM2\@§ sets, using a
method which combines Gabor based feature detections dlipea list of face hypothe-
ses, which are then tested using a SVM face model. These tihwdsecan be compared
with the PRFR+AAM algorithm for the task of eye pupil detecti

3Note, the equivalent graph in [5] is slightly different basa it ignores cases where the global face detector
fails.
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Figure 5: Comparison with authors’ previous search resuitthe BIOID test set

Jersorskyet al. [11] introduce a distance measure for eye search, whichrdedbe
maximum point to point error over both eye point predictiomsrmalised by the known
inter-ocular separation. We refer to this distance meaasird,. Figure 6(a) plotsng,
for the first two sessions of the XM2VTS data set [12], whiclhgiets of 1180 images.
Similarly Figure 6(b) plotsng, for all three methods on the BIOID data set.
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Figure 6: Comparison with previously published results &ye finding on the
XM2VTS [12] and BIOID test sets [11]

Figure 6(b) shows that when applied to the BIOID images, tRER+AAM is more
successful than the Jesorsky method for all values.ef For example withng, = 0.1, the
PRFR+AAM search finds 96% of faces successfully compare8%6 0'sing the Jesorsky
approach. The Hamofiznethod is more likely to find eye pupils very accurately (e.g.

4Here we take the best face match omlgt the top 30 hypotheses, which are used by Haneia. [9] for
face verification.



Mg < 0.05), but is not very robust, sometimes failing to find the faocepletely and is
the worst performing method on the BIOID data setrfgs > 0.1.

However the results are very different for the XM2VTS datha $égure 6(a) shows
that the accuracy of all three eye finding methods are verifagion the cleaner XM2VTS
images. Withmg = 0.1, the Hausdorff+MLP search, Hamouz approach and PRFR+AAM
achieve a success rate of around 93% and give very similéorpgance for all values of
Me. This indicates that the Hausdorff+MLP and Hamouz methodskwvell on rela-
tively clean images under controlled conditions (e.g. thé2X/TS data set), but are less
successful on the more complicated BIOID data set. The ratatie Boosted Cascade
Face Detector + PRFR+AAM search can find eye pupils reliablpath data sets.

The multi-stage approach is reasonably efficient requikibtg00ms to search a BIOID
image using a relatively elderly PC (500Mhz PII process®he PRFR step is the most
time consuming operation requiring800ms, due to the summation of 867 histograms
(17*17*3) when predicting feature locations.

6 Summary and Conclusions

A multi-stage approach to facial feature detection has h@esented, combining the
Boosted Cascade Face Detector [17], a novel constraineddaietection method (PRFR)
and a refinement of the predicted points using the edge/céviil [16]. The method is
found to predict accurate feature locations on the BIOIadat (see Figure 4(c)). This
three stage approach is shown to outperform the authorgiqu®results (see Figure 5).
When used to predict eye pupil locations only, the methodasveho give superior per-
formance to results published by Jesorskyl.[11] and Hamouzt al.[9] on the BIOID
data set (see Figure 6(b)).

The edge/corner AAM approach is shown to outperform theimalgAAM approach
when searching the BIOID data set, initialised using averfegture points predicted
from the Boosted Cascade Face Detector (see Figure 4(b)uevdo, it is also shown
that far superior results can be obtained by initialising ¢édge/corner AAM with points
predicted by PRFR (see Figure 4(c)). This indicates thatAth® needs a very good
initialisation to avoid inaccurate matching due to falsaimia. PRFR point prediction is
much more accurate than average point prediction, so mts@ ri@inima can be avoided
and the overall search performance improved when using FRARI. Some example
search results are shown in Figure 7.

In conclusion, the three stage method described gives aecpoint predictions for
17 feature locations, is reasonably efficient and able t@ euith a challenging test set,
which contains unconstrained lighting variation. The teghe is very applicable to the
tasks of face/expression recognition and automatic lalgedif human faces.

References

[1] M. Burl, T. Leung, and P. Perona. Face localization viagshstatistics. InSl International Workshop on
Automatic Face and Gesture Recognition 1988rich, Switzerland, 1995.

[2] T.F. Cootes, G.J. Edwards, and C. J. Taylor. Active apgoeae models. In H.Burkhardt and B. Neumann,
editors, %" European Conference on Computer Visigalume 2, pages 484—-498. Springer, Berlin, 1998.

[3] T.F. Cootes and C.J. Taylor. Statistical models of apgeee for computer vision. Technical report, Dept
of Imaging Science and Biomedical Engineering, February 2001



(4]

(5]

(6]

(7]

(8]

(9]

[20]

[11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

D. Cristinacce and T. Cootes. Facial feature detectisingiadaboost with shape constraints. 114
British Machine Vision Conference, Norwich, Englapdges 231-240, 2003.

D. Cristinacce and T. Cootes. A comparison of shape caimgtd facial feature detectors. If'6nter-
national Conference on Automatic Face and Gesture Redogn004, Seoul, Koregpages 375-380,
2004.

I. Dryden and K. V. Mardia Statistical Shape Analysi§Viley, London, 1998.

R. S. Feris, J. Gemmell, K. Toyama, and \iger. Hierarchical wavelet networks for facial featurealec
ization. In 8" International Conference on Automatic Face and GestureoReition 2002, Washington,
USA Washington D.C. , USA, May 2002.

Y. Freund and R.E. Schapire. A decision-theoretic galiation of on-line learning and an application to
boosting. In 29 European Conference on Computational Learning Theb®@5.

M. Hamouz, J. Kittler, J. K. lamarainen, and H. Klvidinen. Affine-invariant face detection and localiza-
tion using gmm-based feature detectors and enhanced appeanadel. pages 67—-72, 2004.

C. Harris and M. Stephens. A combined corner and edgetetdn 4" Alvey Vision Conferencg@ages
147-151, 1988.

0. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Rsilface detection using the hausdorff distance. In
3 |nternational Conference on Audio- and Video-Based BidimPerson Authentication 20Q2001.

K. Messer, J. Matas, J. Kittler, J. Luettin, and G. MaitiXm2vtsdb: The extended m2vts database. In
Proc. 2nd Conf. on Audio and Video-based Biometric Persbadfication Springer Verlag, 1999.

E. Osuna, R. Freund, and F. Girosi. Training supportaremachines: An application to face detection.
In Computer Vision and Pattern Recognition Conference 199%7.

J. Pearl Probablistic Reasoning in Intelligent Systenvdorgan Kaufman, San Mateo, California, 1988.

W. Rucklidge. Efficient visual recognition using theusaorff distance. Lecture Notes in Computer
Sciencel1173, 1996.

I. M. Scott, T. F. Cootes, and C. J. Taylor. Improving am@&ce model matching using local image
structure. Ininformation Processing in Medical Imagingg" International Conferengepages 258-269,
July 2003.

P. Viola and M. Jones. Rapid object detection using sstembcascade of simple features.domputer
Vision and Pattern Recognition Conference 20@dlume 1, pages 511-518, Kauai, Hawaii, 2001.

K.C. Yow and R. Cipolla. A probabilistic framework for peeptual grouping of features for human face
detection. In 24 International Conference on Automatic Face and GestureReition 1996 pages 16—?,
Killington, Vermont, USA, 1996. IEEE.

(@) mez7 =3.93% (b) Mey7 = 4.45% (c) me17 =5.84% (d) Mer7 = 7.14%

Figure 7: Example searches and search ermgsy), using PRFR+edge/corner AAM on
the BIOID data set. Here “+"= manually labelled ground tratid “x"= points predicted
using PRFR+edge/corner AAM search.



