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Abstract

Many clustering problems in Computer Vision group data points that are the result of

statistical estimation and these data points can have a great amount of uncertainty.

Motion segmentation by clustering of optical flow is such an example because very

often optical flow cannot be estimated without significant uncertainty. We present a EM

based clustering algorithm for incomplete data and we apply it to the problem of motion

segmentation. The input to the algorithm are the velocity likelihoods and the number of

clusters. The algorithm is mathematically very elegant because it does not impose any

constraints on the velocity likelihood thus multi-modal likelihood is modeled without

difficulty. Coupled with a sophisticated correlated image noise model, the algorithm can

handle substantial deviations from the intensity constancy assumption. Experiments

with real image sequences show excellent results.

1. Introduction
The process of grouping pixels having similar motion characteristics is called motion

segmentation. A popular approach for describing motion similarity within a seg-

ment/layer [12] is by their optical flow. The computation of optical flow at a pixel is an

under-constrained problem and the classical solutions [2] almost exclusively use con-

straints from neighboring pixels by assuming one of the several smoothness constraints

which usually do not hold on object boundaries. Motion segmentation based on optical

flow is thus a chicken and egg problem: In order to compute flow accurately, we need to

know motion boundaries but locating the motion boundaries amounts to doing segmen-

tation which requires flow as input. Our approach subscribes to the paradigm [4] that

does motion segmentation without computing the full optical flow first.

Some of the most successful techniques start [4, 1] by computing flow or normal

flow and then clustering the flow vectors. This clustering is applied to a subset of the

image: anything ranging from a set of selected points to every pixel within a certain

region. One of the difficulties with this approach is that due to the aperture problem, the

uncertainty in the flow estimation can be high. In other words, our knowledge of the
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data is incomplete. In this paper, we apply Expectation Maximization to the clustering

of incomplete data and develop a clustering algorithm that takes as input the likelihood

of the displacement and the number of clusters.

2. Motion Segmentation
We identify small textured patches and for each patch, we estimate its likelihood of

observing a set of flow velocities. Our velocity likelihood representation allows for

modeling of multi-modal distribution and hence can account for temporal aliasing (mul-

tiple matches) and possibly motion discontinuities within a patch. We introduce a clus-

tering method to fit multiple affine parameters to their flows and a simple statistical

technique to obtain the affine flow as a by-product of clustering by maximizing the con-

ditional probability of the flow giv en the location of the patch.

We then compute dense segmentation by warping the image with the computed

motion models and identify the spatial support of each layer by statistical hypothesis

testing using Mahalanobis distance as the underlying statistic. Mahalanobis distance can

be seen as weighted SSD (Sum of Squared Differences) for correlated data.

Section 3 describes the evaluation of flow likelihood on features. Section 4 and 5

describes clustering of flow by EM based clustering algorithm that handles incomplete

data. Section 6 shows the derivation of affine parameters for the layers as a by-product

of EM clustering. Section 7 presents the dense segmentation technique and the corre-

lated noise model. Section 8 presents the results of motion segmentation on real image

sequences.

3. Evaluation of Velocity Likelihood
We identify feature points that are surrounded by adequate texture by using an algo-

rithm proposed by Tomasi and Kanade [11]. The algorithm identifies a feature point as

one for which the smallest eigenvalue for matrix M are bigger than a certain threshold

λ t where

(3.1)M =




E xx

E xy

E xy

E yy





,

and E xx = ∫ I2
x , E xy = ∫ I x I y, E yy = ∫ I2

y . I is the image and I x , I y, are the spatial

derivatives of the image. Out of all the points in the image that satisfy this condition we

randomly select a number of them with preference to the ones with large smallest eigen-

value.

At each feature point i, we compute its likelihood of observing a set of flow veloci-

ties which is then input to our clustering algorithm that can handle incomplete data.

Specifically, we retain a patch Im1i centered around feature point i from image Im1 and

also retain the whole image Im2. So our data is Di = { Im1i , Im2 }. The likelihood of the

flow is then

L(ui |Di) = P(Di |ui) = P(Im1i , Im2 |ui) =

P(Im2 |ui)P(Im1i | Im2, ui) = P(Im2)P(Im1i | Im2, ui)

assuming that the static image Im2 is independent of the flow ui . Since P(Im2) is con-

stant



L(ui |Di)∝ P(Im1i | Im2, ui) = P(∆ Imi(ui))

where ∆ Imi(ui) is the difference between the patch Im1i and the corresponding patch on

Im2 displaced by ui . If we treat ∆ Imi(ui) as a vector then we can write

(3.2)L(ui | Di) =
1

√  (2π )k2
|Ci |

e
−

∆ Imi(ui)
T C−1

i ∆ Imi(ui)

2

where Ci is the covariance matrix and the patch size is k × k pixels. The quantity

∆ Imi(ui)
T C−1

i ∆ Imi(ui) is the Mahalanobis distance between the aligned image patches.

We will describe how to compute the Mahalanobis distance in section 7. In our experi-

ments, we represent L(ui | Di) by samples on a regular grid where the components of ui

range from −10. . 10.

4. Clustering of Flow by EM
Black and Jepson [4] and Ayer, et al [1] model multiple motions within a patch by a

Mixture of Gaussians and find the flow of each motion component by Expectation Max-

imization (EM) [5]. A Mixture of Gaussians (or Gaussian Mixture Model, GMM) is a

multi-modal probability distribution with density for a sample u

(4.1)p(u | θ ) =
K

j=1
Σ π j N (u; µ j , C j)

where θ = {θ j = (π j , µ j , C j), j = 1. . K}, π j are the mixture probabilities, µ j and C j are

the mean and covariance of the jth Gaussian of the mixture and K is the number of lay-

ers. A sample ui can be thought of as generated in a two step process. In the first step

we choose a Gaussian j with probability π j and then in the next step we generate x

from the jth Gaussian. Although Eq .(4.1) looks simple, it is impossible to have a closed

form estimate of parameters θ using Maximum Likelihood Estimator. So we use EM.

EM is an iterative solution to the Maximum Likelihood Estimation problem and is

useful when the observed data is incomplete, e.g. if we had the “complete” data, the

problem would be easy to solve. The method also applies to problems that can be mod-

eled as incomplete such as fitting a Mixture of Gaussians to a set of data, because if we

were given the memberships of the data to clusters, it would become a problem with

well known solution. In our clustering the incomplete data include the flow vectors as

well.

Our approach differs from previous clustering approaches for motion segmentation in

several respects. 1) We use a novel clustering algorithm that can explicitly handle uncer-

tainty in the data and can model multi-modal distributions. 2) We apply the clustering

to a small set of feature points and compute the affine parameters as a by-product of the

clustering algorithm. 3) We perform dense segmentation as a separate step using a shift

and align algorithm [8, 13] that incorporates a sophisticated correlated noise model [13].

Specifically, we obtain a small number (N ) of textured image patches (eg. N < 300

for 320 × 240 images) by extracting k × k patches centered at randomly selected good

features found using Eq. (3.1). For each image patch, we calculate its likelihood of

observing a set of flow velocities u. The likelihood of the feature vectors is input to EM

based clustering algorithm that is described in the next section.



5. Clustering of Incomplete Data
The well known EM Clustering algorithm takes as input a set of data and fits a GMM

to the data. By convention it has two steps per iteration, the Expectation step (E-step)

where we compute the membership probabilities for every datum using a guess for the

mixture probabilities and the parameters of the Gaussians (mean and covariance) for

each component in the GMM. The other step is the Maximization step (M-step) where

we compute new values for the mixture probabilities and parameters for the Gaussians

based on the computed membership probabilities. The expectation and maximization

steps iterate until convergence.

The above EM Clustering algorithm as well as our EM Clustering algorithm is

derived from the EM Algorithm [5] which also has two distinct steps: the Expectation

and the Maximization. In the E-step, we calculate the conditional expectation

(5.1)Q(θ , θ t) = EDz
{ ln p(Dy |θ )|Dx , θ t}

where θ t is a guess for θ (normally the result of the previous iteration),

Dx = {Di , i = 1 . . . N} is the observed data, Dy = {yi , i = 1 . . . N} with yi = (Di ,ψ i , ui)

is the complete data and Dz = (zi , i = 1, . . . , N ) with zi = (ψ i , ui) is the unobserved data.

The cluster membership ψ i is an array of length K such that ψ ij = 1 if ui was generated

by the jth cluster and zero otherwise. The only observed data are the images contained

in Dx while the flow ui and the cluster membership ψ i are unobserved data. In the origi-

nal EM clustering the observed data is the flow and the unobserved data is only the clus-

ter membership.

In the M-step, we find the θ that maximizes Q(θ , θ t), which will become θ t+1 in the

next iteration.

We start by deriving the Q(θ , θ t) for the E-step. The probability of the complete data

given the clustering parameters is

p(Dy |θ ) =
N

i=1
Π p(yi |θ ) =

N

i=1
Π p(ψ i |θ )p(ui |θ ,ψ i)p(Di |θ ,ψ i , ui) =

N

i=1
Π p(ψ i |θ )p(ui |θ ,ψ i)p(Di |ui) =

N

i=1
Π









K

j=1
Π π j

ψ ij









K

j=1
Π p(ui |θ j)

ψ ij





p(Di |ui)



.

where π j is the mixture probability for cluster j and θ j is the parameter set for jth clus-

ter. We define ψ ij = E{ψ ij|θ t , D} and substitute back into Eq. (5.1) and after some

mathematical manipulations [14]

(5.2)

Q(θ , θ t) =
N

i=1
Σ





K

j=1
Σψ ij log π j +

K

j=1
Σψ ij ∫ log p(ui |θ j)p(ui |Di , θ j

t)dui + E{ log p(Di |ui)|θ t , Dx}


.

The third term in the equation does not contain θ so we do not consider it any more. We

present the following lemma (for a proof see [14])

Lemma 1: If p(ui |θ
t , D) = p(ui |θ

t , Di) and p(Di |θ
t , ui) = p(Di |ui) then



(5.3)
ψ ij =

π j
t gij

K

k=1
Σ π k

t gik

where

(5.4)gij = p(Di |θ j
t) = ∫ p(Di |ui)p(ui |θ j

t)dui

The M-step is just the following lemma (for a derivation see [14]):

Lemma 2: Q in Eq. (5.2) is maximized for

π j =

N

i=1
Σψ ij

K

k=1
Σ

N

i=1
Σψ ik

, µ j =

N

i=1
Σψ ij

g′ ij
gij

N

i=1
Σψ ij

, C j =

N

i=1
Σψ ij

g′′ ij

gij

N

i=1
Σψ ij

where

(5.5)g′ ij = ∫ p(Di |ui)p(ui |θ j)ui dui

(5.6)g′′ ij = ∫ p(Di |ui)p(ui |θ j)(ui − µ j)(ui − µ j)
T

This version of EM clustering becomes standard EM clustering if p(Di |ui) in Eq. (5.4),

(5.5), (5.6) is replaced by a delta function.

EM being an iterative technique, needs a guess. We use random initialization of

means, covariances and mixture probabilities of the layers and we repeat the procedure

a few times. At the end we select the run with the maximum likelihood.

We obtain the number of layers by using Bayesian Information Criterion (BIC) [6]

which is defined as

(5.7)BIC = 2lM (x, θ̂ ) − mM log(n)

where lM (x, θ̂ ) is the maximized mixture log likelihood for the model, mM is the num-

ber of independent parameters to be estimated in the model and n is the number of data.

In the BIC, a term is added to the log likelihood to penalize complex models. We deter-

mine the number of layers by selecting the layer that has the maximum BIC value out of

the possible layers.

6. Affine Parameters
One can use a 6 × 1 vector to represent an affine flow for each feature point. The

problem with this is that we would need a large patch centered on the feature point but

at the same time incurring a higher risk of straddling a motion boundary. So we propose

a simple technique that obtains the affine parameters as a by-product of the clustering

process. We augment the flow vector ui by the coordinates of the feature point xi so it

becomes a four dimensional vector and the clustering effectively gives us P(u, x|θ j)

instead of P(u|θ j). Then we derive the affine flow u j of each layer j by maximizing its

conditional probability. Using the conditional probability formula [10],



P(u | x, θ j) =
P(u, x | θ j)

P(x | θ j)

we maximize P(u | x, θ j) and obtain

(6.1)u j = C j, ux C−1
j, xx x + (µ j,u − C j, ux C−1

j, xx µ j,x)

where µ j the mean for cluster j and C j the covariance for cluster j are

µ j =




µ j,u

µ j,x





C j =




C j, uu

CT
j, ux

C j, ux

C j, xx





Eq. (6.1) is an affine expression and although tedious to derive, it is an inexpensive

computation since all the matrices are 2 × 2.

7. Dense Segmentation
We follow the shift and align paradigm for motion segmentation. For each layer we

warp the one image with the affine flow for this layer toward the other image and sub-

tract them. This difference is small for pixels that move consistently with the flow for

this layer. To check this we examine small patches (5 × 5 in our experiments) and apply

a χ 2 test to determine the spatial support of each layer.

7.1. Correlated Noise Model

In practice, the noise between neighboring pixels is often correlated. One situation

where the independence assumption is inadequate is when the lighting conditions

change from frame to frame. Then the noise in neighboring pixels becomes correlated

assuming the pixels within a patch are under the same lighting conditions. Another situ-

ation where noise is correlated is when the tracking is uniformly inaccurate such that

pixels within the same patch drift by a similar amount. This is particularly important

when one approximates flow by fitting a simple model like aff ine over a large region.

Such a model is accurate for some patches of the region but introduces a drift in other

patches. In what follows, we describe a model that addresses both situations.

We identify pixels that follow the same affine motion model u j as the jth layer by

evaluating a statistic on ∆ Im the image difference between Im2 and u j Im1 which is Im1

warped by the affine flow u j by examining small k × k patches. For each pixel [i, j]

within a patch,

(7.1)∆ Im[i, j] = u j Im1[i, j] − Im2[i, j]

= ∆n[i, j] + u j Im1, x[i, j] ∆uα [i, j] + u j Im1, y[i, j] ∆vα [i, j]

+u j Im1, x[i, j] ∆u + u j Im1, y[i, j] ∆v + u j Im1[i, j] ∆l + ∆ f

where ∆n[i, j] is a pixel-wise white noise that is attributed to image acquisition noise in

the camera. Two components of pixel-wise motion noise ∆uα [i, j], ∆vα [i, j] that come

from either independent motion of image details within an image patch (for example,

the motion of individual moving leaves of a tree) or more commonly from aliasing in

images. The aliasing arises as a consequence of resampling of the images or warping

and we found empirically to be proportional to the derivatives of images. All three ran-

dom variables ∆n[i, j], ∆uα [i, j] and ∆vα [i, j] are independent and identically dis-

tributed (i.i.d.) or white noise. u j Im1, x[i, j] ∆uα [i, j] is not identically distributed noise



since its magnitude depends on Im1 but it is independent. Next we model four compo-

nents of dependent noise. Two components of patch-wise motion noise ∆u, ∆v that

arises from the error in the tracking within an image patch. Also, there are two patch-

wise noise components ∆l, ∆ f that come from the change of illumination that we model

as affine [9]. Of the seven random variables, ∆n, ∆uα , ∆vα are arrays with k2 elements,

the rest ∆u, ∆v, ∆l, ∆ f being scalar.

7.2. Mahalanobis Distance

Eq. (7.1) defines a noise model for any image patch that follow the same affine flow

model as the jth layer. So we perform a χ 2 test for every patch in the image to decide

which pixels belong to the jth layer. We identify pixels whose motion follows the affine

flow u j for the jth layer by computing their Mahalanobis distance which is defined as

(7.2)D2
j = (u j

→
Im1 −

→
Im2)T C∆

→
Im

−1 (u j
→

Im1 −
→

Im2)

where C∆
→

Im
is the covariance matrix of ∆

→
Im.

C∆
→

Im
= Cn + U Cu UT

Cn is a k2 × k2 diagonal matrix whose elements are vector
→
1σ 2

n + u j
→

Im1, d σ 2
a where

→
1 is

a vector of 1s, u j
→

Im1, d is a vector from a patch of the sum of squares of the x and y

derivatives of u j
→

Im1 and σ 2
n , σ 2

a are scalar constants representing the variances of the

camera and aliasing noise (∆n, ∆uα , ∆vα ). Cu is a 4 × 4 diagonal matrix for patch-wise

motion noise whose diagonal elements denote the variance of random variables

∆u, ∆v, ∆l, ∆ f and U is a k2 × 4 matrix whose 1st, 2nd and 3rd columns are the ele-

ments of the k × k patch extracted from u j Im1, x , u j Im1, y and u j Im1 respectively. The

4th column is a vector of all 1s.

A daunting problem associated with the Mahalanobis distance is efficiency. Since

Mahalanobis requires the inversion of the covariance matrix and for a k × k patch the

covariance is k2 × k2, the cost of the inversion is O(k6). This is time-consuming even for

a small patch size because we need to do that for every pixel in the image. In [13], we

show how to speed up the computation by using the Sherman-Morrison-Woodbury iden-

tity [7] and amortize the cost of computation over the whole image thus reducing the

cost from O(k6) to constant time.

The Mahalanobis distance between two k × k image patches follows a Chi-Square

distribution [10] with k2 degrees of freedom for appropriately estimated variances of the

random variables. In [13], we show how to do that using a Maximum Likelihood Esti-

mator. We can segment out pixels that belong to the jth layer by thresholding D2
j . The

value of threshold t χ 2 can be taken from a χ 2 table [10]. For patch size k = 5 × 5, the

degrees of freedom are 25, t χ 2 = 46. 9 for confidence level 0.995.

8. Experiments
In this section, we present the results of running our algorithm on real image

sequences. In the first experiment, we run the algorithm on two frames from the Flower

Garden Sequence [3]. The algorithm automatically selects the number of layer that

yields the maximum BIC value for dense segmentation. For the flower garden sequence,

the number of layers is 3.
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Figure 8.1: A graph of BIC against number of layers.

Figure 8.2: Fr ame 1, segment corresponding to tree branches

Figure 8.3: Segments corresponding to the tree and background

Figure 8.4: Fr ame 8, segment corresponding to tree branches

Figure 8.4: Segments corresponding to the tree and background

Figure 8.6: Fr ame 14, segment corresponding to branches



Figure 8.7: Segments corresponding to the tree and background

In the second experiment, we run the algorithm on an image sequence which shows a

moving toy truck taken by a hand-held camera trying to follow the motion of the truck.

Both the foreground and background are moving.

Figure 8.8: Fr ame 1, segments corresponding to truck and moving background

Figure 8.9: Fr ame 8, segments corresponding to truck and moving background

Figure 8.10: Fr ame 16, segments corresponding to truck and moving back-

ground

9. Conclusion
In this paper, we present a novel motion segmentation algorithm. The algorithm

clusters the likelihood of observing a set of flow velocities at textured image patches

using a specialized version of EM that treats the image flow velocities as incomplete

data. We obtain the affine parametric flow models of each layer as a direct by-product of

EM clustering. Our residual noise model allows for correlation between neighboring

pixels in contrast to previous approaches which assumes an independent noise model.

We identify the pixels belonging to a layer by thresholding their Mahalanobis distance

and for an image patch of size k × k, we reduce the cost of inversion of a big k2 × k2



covariance matrix from O(k6) to constant time by using Sherman-Morrison-Woodbury

identity and amortizing the computational cost over the whole image. Our experiments

with real image sequences show the algorithm produces good layers from two frames.
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