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Abstract

A new method to fit specific types of conics to scattered data points is in-
troduced. Direct, specific fitting of ellipses and hyperbolæ is achieved by im-
posing a quadratic constraint on the conic coefficients, whereby an improved
partitioning of the design matrix is devised so as to improve computational
efficiency and numerical stability by eliminating redundant aspects of the fit-
ting procedure. Fitting of parabolas is achieved by determining an orthogonal
basis vector set in the Grassmannian space of quadratic conic forms. The lin-
ear combination of the basis vectors which fulfills the parabolic condition
and has a minimum residual is determined using Lagrange multipliers.

1 Introduction

This paper addresses the problem of fitting a specific type of conic to scattered data, e.g.
finding the best hyperbolic approximation to a set of data points. Solutions are provided
for all three types of conic, i.e. hyperbolæ, ellipses and parabolas, together with their
degenerate forms. This is especially useful whena-priori knowledge of the problem
indicates the type of conic to be fit.

This problem was addressed by Nievergelt [10], however the quadratic constraint used
by him leads to a general fit. The result of the fit is tested for its type; if it is not of the
sought type then he proceeds to solve ageodetic equation leading to the nearest conic
of the desired type. Quadratic constrained least squares was first successfully applied
by Fitzgibbon et al. [3] to the problem of ellipse specific fitting — a task which was
considered to be fundamentally non-linear up to that time. The work of Fitzgibbon et al.
was extended by O’Leary et al. [11] to solve ellipse specific and hyperbola specific fitting.
However, a parabola specific fit cannot be solved using standard quadratic constraints
since it requires a zero constraint, which cannot be implemented by Lagrange multipliers.
The most important contributions of this paper are:

1. A new linear parabola specific fitting method.

2. An improved matrix partitioning, extending the work of Halir et al. [7]. An in-
cremental orthogonal residualization of the partitioned scatter matrix is performed
which corresponds to a generalization of the Eckart-Young-Mirsky theorem [5].

The theoretical background to the proposed methods is presented and verified by compre-
hensive numerical testing.
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2 Data Preparation

Chojnacki et al. [2] proved that ensuring the data is mean free and scaled to have a
root-mean-square distance of

√
2 to the origin improves the numerical performance and

statistical behaviour of a fitting algorithm. In a planar fit this involves subtracting cen-
troid coordinates(x,y) from raw data(xi,yi) to give so-calledmean-free coordinates
(x̂i, ŷi) = (xi − x,yi − y). The appropriate scaling factorm imposes the metric, with

m =
√

2n
∑n

i=1(x̂2
i +ŷ2

i )
. Therefore the data set becomes(xi,yi) � (mx̂i,mŷi).

3 Reduction of the Scatter Matrix

The notation for the quadratic forms in the projective plane, i.e. the conic sections, used
in standard literature on geometry [8] is,

pT Kp =
[
x y w

]

a b

2
d
2

b
2 c e

2
d
2

e
2 f





x

y
w


 = 0, (1)

whereK is the conic matrix, andp is a homogeneous point withw the homogeneous
coordinate. This conic equation can be written as a product of vectors, i.e.

dz =
[
x2 xy y2 x y 1

][
a b c d e f

]T = 0. (2)

The “design” d and coefficientz vectors are respectively the dual-Grassmannian and
Grassmannian coordinates of the conics. Givenn points, the vectord becomes then-
row design matrixD. This results in a vectorr which is the residual vector of then points
in the conic equation whose norm is to be minimized, and corresponds to the algebraic
distances of the points to the conic. The partitioning of the design matrixD and coefficient
vectorz is proposed as follows,

Dz = r =
[
D2 D1 D0

]

z2

z1

z0


 =




r1
...

rn


 . (3)

In this case, the matrices are partitioned into groupings of their quadratic, linear, and
constant terms, i.e.

D2 =




x2
1 x1y1 y2

1
...

...
...

x2
n xnyn y2

n


 , D1 =




x1 y1
...

...
xn yn


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


1
...
1


 , (4)

and therefore,
z2 =

[
a b c

]T
, z1 =

[
d e

]T
and z0 = f . (5)

The sum of the squared residuals is thus,
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zT

2 zT
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]
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
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
z2
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z0


 = rT r, (6)



where the scatter matricesSi j are defined as,Si j � DT
i D j, noting of course thatSi j = ST

ji,
andS00 = n. The unique minimum of the least squares problem occurs when the set of
partial derivatives of Equation 6 are equal to zero, i.e. when,

S22z2 +S21z1 +S20z0 = 0 (7)

ST
21z2 +S11z1 +S10z0 = 0 (8)

ST
20z2 +ST

10z1 +nz0 = 0. (9)

The partial derivative with respect toz0, Equation 9, implies that,

z0 = −1
n

[
ST

20 ST
10

][
z2

z1

]
= −

[
x2 xy y2 x y

][
z2

z1

]
. (10)

This directly states that the linear fit, which in this space is a hyperplane, must pass
through the centroid of the points in the corresponding space. Nievergelt [9] applies this
to the fitting of hyperplanes and hyperspheres. Thus, with mean-free planar data, if we
apply a transformation in the hyperspace such that,

D2 �




x2
1− x2 x1y1− xy y2

1− y2

...
...

...
x2

n − x2 xnyn − xy y2
n − y2


 , (11)

and redefine the quadratic design matrix and associated scatter matrices accordingly, then
Equation 10 is satisfied byz0 = 0. This effectively forces the hyperplane through the
centroid of the data, satisfying the partial derivative with respect to the coordinatez0.
This transformation not only ensures the Euclidean invariance of the fit, but also reduces
the dimensionality of the problem. The column of ones,D0, is redundant to the problem
at hand. This is a reduction of dimensionality that has been overlooked in past literature.
The problem is reduced to determining the orientation of the hyperplane to be fit, as the
relative shift is now known. The reduced system of partial derivatives is now,

S22z2 +S21z1 = 0 (12)

ST
21z2 +S11z1 = 0. (13)

Solving the partial derivative with respect toz1, Equation 13, for the linear coefficient
vector yieldsz1 whenz2 is held constant, i.e.

z1 = −S−1
11 ST

21z2. (14)

Substitution of this relation andz0 = 0 into the least squares problem in Equation 6 results
in a function in the quadratic coefficients only, and free of the redundant column of ones
D0, i.e.

zT
2

(
S22−S21S

−1
11 ST

21

)
z2 = rT r. (15)

The matrix,
M � S22−S21S

−1
11 ST

21 = DT
2

(
In −D1D

+
1

)
D2, (16)

is the reduced scatter matrix sought, and is theSchur Complement of S11 in the scatter
matrix. The matrixD+

1 is the pseudo-inverse matrix ofD1, i.e. the matrix which maps



vectorz1 from a given vector with a least squares residual. The matrix productD1D
+
1 is

the set of orthogonal projections on to the range space ofD1, and is — to a scaling factor
— the covariance of the residuals of the linear portion of the data. Specifically, ifσ1 and
σ2 are the singular values ofD1 which correspond to the residual vectorsr1 andr2, then,

D1D
+
1 =

1

σ2
1

r1rT
1 +

1

σ2
2

r2rT
2 . (17)

This implies that matrixM is the result of subtracting the quadratic residual elements
predicted by the linear portion from the residuals of the quadratic portion. This allows
an optimization to be performed in the space on the coefficientsz2, a subspace for which
correspondingz1 vectors have a residual of minimal norm. In other words, the mapping
in Equation 14 corresponds toz1 = −D+

1 D2z2, and is thus the least squares mapping of
z1 from the residual vector ofz2, and essentially refits the linear portion given the specific
quadratic coefficients. This corresponds to the generalization of the Eckart-Young-Mirsky
theorem proposed by Golub et al. [5].

4 Fitting Conics with a Quadratic Constraint

The problem of the linear fitting of a conic with a quadratic constraint on the roots at
infinity can now be stated as,

zT
2 Mz2 = min

z2 �=0
subject to zT

2 Cz2 = α , (18)

where matrixC is a quadratic constraint on the coefficientsa, b, andc. As Bookstein [1]
showed, the minimization problem can be stated as a Lagrange multiplier problem, and
solved as a generalized eigenvector problem. Combining the function to be minimized
and the constraint with a Lagrange multiplier, results in the system

H (z2) = zT
2 Mz2 +λ

(
zT

2 Cz2−α
)
, (19)

which is solved for its partial derivatives,

Mz2 +λ Cz2 = 0 (20)

zT
2 Cz2 = α . (21)

Solving Equation 20 as a generalized eigenvector problem yields eigenvectors which min-
imize zT

2 Mz2. Moreover, if(λi,ei) is a solution to the generalized eigenvector problem
then,

sign(λi) = sign
(
eT

i Cei
)
. (22)

This fact is known as theSylvester Law of Inertia [6], and is essential to the specific fitting
algorithm. Further simplification occurs if the matrixC is non-singular, in which case the
generalized eigenvector problem can be solved as the eigenvector problem,

C−1Mz2 = λ z2. (23)

With an approach proposed by O’Leary and Zsombor-Murray [11] the constraint,

b2−4ac = zT
2


 0 0 −2

0 1 0
−2 0 0


z2 = α , (24)



is applied. It was shown that two of the resulting eigenvectors correspond to the best
elliptical and best hyperbolic solutions. The solutions are extracted by evaluating the
conditionb2−4ac in terms of the resulting eigenvectorse1,e2, ande3, i.e.

κi = e2
i2−4ei1ei3, (25)

whereei j is the jth element of theith eigenvector. The ellipse is found as,

ez2 = eu where u = min
i

(κi), (26)

and the hyperbola as,
hz2 = ev where v = min

i�=u,κi>0
|λi| , (27)

andλi is the eigenvalue corresponding to theith eigenvector. In other words, the ellipse
is the eigenvector whose corresponding condition value is the lone negative value. The
two positive values correspond to two hyperbolic solutions, whereby the solution with the
eigenvalue of minimum magnitude is selected.

5 The Parabola

If one wishes to fit a parabola to scattered data, the eigenvector problem in Equation
23 cannot be applied, as the Lagrange multiplier problem results in the trivial solution
when applying the null constraintb2 − 4ac = 0. Also, the secular equation proposed
by Gander [4], does not apply whenα = 0. If the constraint matrixC is the identity
matrix, then the system is solved with the constrainta2 + b2 + c2 = 1, which is implicit
in the evaluation of eigenvector and singular value problems. The resulting eigenvectors
e1, e2, ande3, with the corresponding eigenvaluesλ1, λ2, andλ3, form an orthonormal
basis vector set for the space of the quadratic portion of all conics. The eigenvalues and
corresponding vectors should be ordered such that,

|λ1| ≥ |λ2| ≥ |λ3| ≥ 0, (28)

since normally, the eigenvector corresponding to the eigenvalue of smallest magnitude is
the best fit solution to the linear conic fit. The above constraint ensures that all solutions lie
on the unit sphere centered at the origin. The required condition for a parabola,b2−4ac =
0, corresponds to an elliptical cone in this space (see Figure 1) and forms the boundary
between the ellipses and hyperbolæ. The curve of intersection of the two quadrics, and
thus a fourth order curve, represents the parabolic solutions. Should we want to fit a
parabola, we take the quadratic coefficients of the parabola to be a linear combination of
the eigenvectors of the matrixM, i.e.

pz2 = e3 + se2 + te1. (29)

Since the singular values of the matrixM, i.e. the square-roots of the eigenvalues of
MT M, are the 2-norm distances of the respective vectors to the null-space ofM, then the
eigenvector associated with the smallest singular value can be considered the minimizing
solution. Thus, we assumee3 is the best fit, and use combinations of the other two eigen-
vectors to find optimal parabolic solutions. Since the equations are homogeneous, only
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Figure 1: The surfaceb2−4ac = 0 is an elliptical cone which separates the ellipses from
the hyperbolæ by the parabolas. The unit sphere representing all solutions shows the error
density of a specific set of data on its surface by means of a colour gradient.

two parameters are needed to fully describe the space. The error associated with taking
this linear combination is the magnitude of the resulting residual vector, that is,

‖M(pz2)‖ � ∆(s, t) = (pz2)
T MT M(pz2)

= (e3 + se2 + te1)
T MT M(e3 + se2 + te1)

= eT
3 MT Me3 + eT

2 MT Me2s2 + eT
1 MT Me1t2

= λ 2
3 +λ 2

2 s2 +λ 2
1 t2. (30)

In the quadratic coefficient space, this error function is essentially an ellipsoid-shaped
error density with semi-axes proportional to the singular values of the reduced scatter
matrixM. In the space of the parameterss andt, it is an ellipse-shaped error density with
semi-axes proportional to the first and second largest singular values. The constraint to
ensure thatpz2 is indeed parabolic is found by expanding the constraintb2−4ac = 0 in
terms of the parametric coefficients, i.e.

(e32+ e22s+ e12t)
2−4(e31+ e21s+ e11t)(e33+ e23s+ e13t) = 0, (31)

where againei j is the jth element of theith eigenvector. Expanding this expression yields
an expression in the form,

C(s, t) = γ1s2 +γ2st +γ3t2 +γ4s+γ5t +γ6 = 0, (32)

which is a conic in the parameter space. The problem is thus to minimize the error func-
tion of Equation 30, i.e.∆(s, t), upon the points of the constraint conic. This can be
formulated as the Lagrange multiplier1 problem,

H(s, t) = ∆(s, t)+ µC(s, t). (33)

1Standard literature usesλ for eigenvalues as well as Lagrange multipliers, thus to avoid confusion,µ has
been chosen to denote the Lagrange multiplier.



Upon solving the partial derivatives ofH(s, t), a fourth order polynomial inµ is obtained.
Defining the coefficients,

α1 = λ 2
1

k1 = 4γ3γ6−γ2
5

k4 = 4γ6γ1−γ2
4

k7 = −4(γ1α1 +α2γ3)

α2 = λ 2
2

k2 = γ2γ6− 1
2γ4γ5

k5 = 4γ1γ3−γ2
2

k8 = γ1k1−γ2k2 +γ4k3,

α3 = α1α2

k3 = 1
2γ2γ5−γ3γ4

k6 = γ2γ4−2γ1γ5

(34)
the polynomial coefficients are given as,

K4 = k5k8 K3 = 2k7k8

K2 = 4[(2γ2k2 +4k8)α3 +γ1k4α 2
1 +γ3k1α 2

2 ]
K1 = −8α3(k1α2 + k4α1) K0 = 16γ6α 2

3 .
(35)

Thus, solving,
K4µ4 +K3µ3 +K2µ2 +K1µ +K0 = 0, (36)

yields four solutions forµ. The best fitting parabola can be extracted as it corresponds
usually, but not always, to the real Lagrange multiplier with the smallest magnitude, i.e.

µ∗ = min
i
|µi|, µi ∈ R. (37)

Backsubstitution for the correspondings∗ andt∗ is in the form,

s∗ =
2µ∗
u∗

(k3µ∗ +α1γ4), and t∗ =
µ∗
u∗

(k6µ∗ +2α2γ5), (38)

where
u∗ = k5µ2

∗ + k7µ∗ +4α3. (39)

The quadratic coefficients of the parabola are found by backsubstitution of thes∗ andt∗
into the linear combination of the eigenvectors, i.e.pz2 = e3 + s∗e2 + t∗e1.

6 Backsubstitution

Given the quadratic solution vectors of the conics,z2, be it the ellipseez2, hyperbola
hz2, or parabolapz2, backsubstitution is the same. The quadratic coefficients are known,
and thus the directions of the asymptotes are also known. The backsubstitution then
determines the shift of the conic centre as well as its scaling factor as to how far it is from
the mere product of the asymptotes, i.e. a degenerate conic. The backsubstitution can be
accomplished in concise matrix form, that is,

z =


 I3

−S−1
11 ST

21

−x2 −xy −y2


z2 � Bz2, (40)

whereI3 is the 3×3 identity matrix. Thus,B is a 6×3 matrix, and the resulting vectorz is
the set of corresponding conic coefficients, i.e. the Grassmannian coefficients. As noted
above, the mapping of the linear portion is a least squares mapping from the quadratic



residual vector, and the constant term corresponds to pushing the hyperplane back to fit
through the actual centroid of the data in the hyperspace.

In the plane, the transformation which will place the conic back onto the original data
is the same transformation applied to the data but in the form of the similarity transfor-
mationK∗ = TT KT, where,

T =


m 0 −mx

0 m −my
0 0 1


 . (41)

7 Summary of Algorithm

The algorithm resulting from the above analysis can be summarized as follows:

1. Generate a scaled, mean-free set of data points,

mxi = m(xi − x) and myi = m(yi − y) . (42)

2. Perform a linear regression on the mean-freemxi and myi. If the residual is too
small, stop the algorithm, since the data is best described by a line.

3. Generate the quadratic design matrix, and remove the mean values from the columns.
Compute the scatter matrix with the linear prediction removed from the mean-free
quadratic terms, i.e.

M = S22−S21S
−1
11 ST

21. (43)

4. For ellipses and hyperbolæ, determine the eigenvectors ofC−1M, whereC defines
the constraintb2−4ac = α . Select the quadratic portion of the elliptical and hyper-
bolic solutions by means of the eigenvalues, and values of the constraint evaluated
for each eigenvector.

5. For parabolas, solve the unconstrained eigenvector problem. Determine and solve
the fourth order polynomial,

K4µ4 +K3µ3 +K2µ2 +K1µ +K0 = 0, (44)

and backsubstitute the realµ with the smallest magnitude to obtain the quadratic
parabola coefficients.

6. Backsubstitute the quadratic coefficients of the desired conic intoz = Bz2. Find the
conic matrix from the Grassmannian coefficients, and apply the similarity transfor-
mationK∗ = TT KT.

8 Numerical tests

The conic forms which are most commonly encountered in metric vision were used to
test the algorithm. In each of the five test cases — i.e. elliptical, elliptical arc, hyperbolic,
degenerate hyperbolic and parabolic data — all three conic types were fitted. The results
show that the algorithm always produces the specific types of conics, regardless of the
nature of the data. The tests were performed with random noise with standard deviations
of 3% of the amplitude of the respectivex andy data. See Figure 2. Further tests indicate
that these specific fitting algorithms are more stable than existing, general ones.
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Figure 2: An ellipse (a), hyperbola (b), and parabola (c) fit to noisy elliptical data. An
ellipse (d), hyperbola (e), and parabola (f) fit to noisy hyperbolic data. An ellipse (g),
hyperbola (h), and parabola (i) fit to noisy parabolic data. An ellipse (j), hyperbola (k),
and parabola (l) fit to noisy degenerate data. An ellipse (m), hyperbola (n), and parabola
(o) fit to noisy elliptical arc data.



9 Conclusions

The above proposed algorithm provides a new and efficient method for the linear fitting
of conics of specific types. The column of ones, common to previous methods is now
implicitly in the problem, rather than explicitly. The efficiency arises from this decrease
in dimensionality of the problem. The three solutions delivered by the algorithm are also
guaranteed to be each the best ellipse, hyperbola, and parabola. The linear and specific
fitting has applications in automatic inspection or prejudicial perception, where fast and
accurate fitting is required for real time inspection of shape manufacturing.
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