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Abstract

This paper outlines the theoretical background and presents a new ap-
proach to human body tracking with monocular static camera. A novel “view-
based representation” is introduced at the feature extraction stage. We show
that ambiguities in correspondence, such as the ones that occur as the result
of occlusion, can be resolved by using this approach. In particular, we store
color information for each object in a vector of views, where the number
of elements is determined online, using unsupervised clustering followed by
the cluster validity assessment. Based on this representation a tracking sys-
tem was developed. The prelimiary results presented show the discriminative
potential of the proposed system.

1 Introduction

The majority of modern tracking algorithms consist of primarily three stages [10]. First,
the objects of interest orforeground have to be separated from noise orbackground. In
case of a static or motionless camera this can be done by creating a certain background
model either a priori or during the run time and, consequently, subtracting this model
from each frame of the tracking sequence. Second, blobs of distinct shape, potentially
corresponding to the objects being tracked have to be extracted from the resulting scene
and feature vectors are to be built descriptive of every blob. The last, third stage, is
concerned with matching each blob to the object (human body in our case) over time and
space.

In this work we have concentrated on the second, representational stage. We approach
it by treating visual features that describe each moving blob as two distinct subsets. The
first set -view independent features, are invariant of the position and orientation of the
human body as well as the illumination of the scene. For the second set containsview-
based features, where each object is thought of as having multiple views. The tracker
keeps the information about each view separately.

Having accumulated information about each view, the program can compute matching
of the model with the blob to each view independently and to choose the best match as
the current view. Implementation of multiple views resolves ambiguities while matching
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blobs in each frame to the human body objects in the system. In particular the system
recognizes humans correctly after being fully occluded by another moving person (Figure
3).

In the following section of this paper we discuss the techniques for representation and
feature extraction existing in the tracking literature. Following that, we outline the three
stages of our tracking algorithm with the stress on the multiple-view representation in
sections 3.2 and 3.3. Finally, we discuss the results obtained by using our tracker, draw
conclusions and outline several prospects for the future work.

2 Related work

One of the forms of view-based object representations in computer vision literature, is
eigen spaces. In such a layout as an object undergoes affine transformations along the
period of time it is matched to a set of the eigen views. These schemes can be used to
track primarily rigid objects [2], where the model for each object is acquired upfront,
during the learning stage. Although the eigenspace accumulated the information about
objects’ color, shape and texture, it is rather difficult to utilize it for real-time tracking as
these three can change independently during tracking time. Specifically, various scaling
approaches have to be applied to bring the size of the object into correspondence with
that of the eigenview. Allowing for these constraints, eigen-veiw modeling has been used
successfully primarily for face tracking [4, 13].

More implementation-oriented works have utilized simplistic feature extraction tech-
niques. For example, in [8, 17] each object’s color and position are recorded and no
feature model is built. In complex tracking situations, this kind of blending of the views
can result in a number of ambiguities, for instance, when all aforementioned features are
identical for two objects undergoing a split event after occlusion.

In [3, 1] the tracking feature is a distribution of colors represented by a color his-
togram, which is compared with a histogram of colors observed within the current region
of interest. This region of gaussian shape is obtained most of the times by some form of
EM algorithm. The method proved to be very productive and tolerant to partial occlu-
sions. It was demonstrated primarily in tracking single moving objects (e.g. human faces)
in less resticted environment (moving camera), but it was not subjected to rigirous testing
on video sequences with multiple moving actors.

Dramatically different approach is to build a 3-D model of the object being tracked
[16, 6]. This is a graphically and computationally intense approach with more than one
high-resolution camera required. Therefore, most of the such algorithms operate in very
limited environment with no occlusions. Human body is modeled by stick figures or
combinations of blobs, where color does not play a crucial discriminatory role, for the
authors are after recognizing human activity, not tracking.

3 Method

3.1 Background subtraction

To subtract the background we have employed an adaptive illumination-invariant method
that operates in HSV space. To discriminate between the moving objects and the static



background, we have exploited the notion of chromaticity and brightness distortion to
isolate highlights and shadows from the actual moving objects (see [7]).

3.1.1 Building the model

Each pixeli of the background was modeled by a 4-tuple< µ i,σi,γi,βi >, whereµi is the
expected color value,σi is the standard deviation of color value,γi is the variation of the
brightness distortion, andβi is the variation of the chromaticity distortion of the i-th pixel.
Let Ii = [IH(i), IS(i), IV (i)] be i-th pixel in the current frame. If the color and brightness
distortion are denoted byCi andBi, then the system is a set of equations [Eq. 1- 6]:

µi = [µH(i),µS(i),µV (i)] (1)

σi = [σH(i),σS(i),σV (i)] (2)

Ci =

√(
IS(i)2 + µS(i)2

σS(i)2

)
− 2∗ IS(i)∗ µS(i)

σS(i)2 ∗ cos

(
IH(i)− µH(i)

σH(i)

)
(3)

Bi =
|IV (i)− µV (i)|

σV (i)
(4)

γi = ∑N
n=1Cn(i)

N
(5)

βi = ∑N
n=1 Bn(i)

N
(6)

The variations of color and brightness distortion in eq. 5, 6 are obtained as the aver-
ages ofCi andBi overN video sequence frames. The background model in this system
was initialized over a small number of frames (seconds). After that an adaptive process
was used to update background model, where the values from [Eq. 1-6] were accumulated
as running aggregates.

3.1.2 Subtracting the model

When the background model is initialized, for each input frameI we mark the pixelI i as
belonging to the foreground if:

Ci

γi
> TC and

Bi

βi
< TB (7)

whereTC is the threshold to ensure a sufficient level of color distortion, given the
history of the distortion at pixeli; andTB is the threshold to ensure that extremely dark
foreground pixels, for whichCi is always small (due to their proximity to the origin of the
color space) get marked as a foreground.

The output of the subtraction process is a binary map image, withones designating a
foreground object andzeros marking the background. We subsequently subject the binary
image to the standard contour extraction algorithm, which produces a vectorB of blobs.
Each blob is a moving area in the video frame that is a potential candidate for tracking
process (see Fig. 1).



3.2 View-based vs. view independent features

As an object moves through the field of the camera view, the appearance of the object
may undergo significant changes due to a number of factors. The translation of the object
across the image plane may change the size of the object as well as the aspect currently
observed by the camera. The rotation of the object itself radically changes the view, with
respect to its color, texture and shape. For non-rigid objects, such as human bodies each
rotation can be accompanied by a complex shape transformation as in walking or sitting
down and standing up. The most complicated, perhaps, is the change of object’s color
due to the variations of incident light cast by other objects and varying distance from light
sources.

With observations above in mind we came to the conclusion that while tracking non-
rigid objects for long periods of time one has to consider two types of features that can
be available as the descriptors for each object:view independent andview-based features.
We defineview as the visual appearance of the tracked object as the result of its particular
location with respect to the camera.

The view independent features considered in our study - object position, velocity and
dimensions - form a 6-tuple< px, py,vx,vy,dx,dy >. The position is determined as the co-
ordinates of the the center of mass of the blob contour. Velocity, is obtained as a discrete
differential betweenpx and py in the current and previous frames. The dimensions are
the width and height of the rectangle bounding the blob. Being view independent, these
features do not undergo any significant changes with the change of the object’s orienta-
tion (assuming human upright posture), neither they are dependent on the variations in
illumination.

Perhaps, the characteristic of a moving human that varies the most as the person
changes orientation is color. We have observed significant changes in color histogram
as a single person rotates in one place in front of the camera. These changes are predom-
inantly due to two factors: differences in color of the clothing in front and at the back
(especially, when wearing an unbuttoned coat or shirt) and different proportions of facial
and hair color in different views (e.g. in the side view there may be more skin color, be-
cause of the exposed arms). Therefore, the appearance of each human body with respect
to color can be conveniently encoded by a vector ofnormalized color signatures

For each human body model we have computed a histogram vectorH = [h 1,h2, ...hK ],
each representing a different view of the person. Each histogramh is a two-dimensional
histogram inH andS space with 32 bins in each dimension. The number of bins was
chosen empirically to provide enough discrimination between different average hue and
saturation, yet at the same time not to overload the system with redundant color informa-
tion.

By looking at the 2-D color histogram in figure 2 one can notice the sparse character
of this matrix. Therefore a variable length normalized color signatures was created for
eachh as follows:

A =
32

∑
x=1, y=1

hxy (8)

i f hk > A∗δ then si =
hk

A
(9)



whereδ determines how many percent of the total color distribution must a color
represent in order to be in the signature. This number was empirically chosen to be 0.01.
Usually from the 32x32 histogram this would yield a color signature of length 5 to 10
elements (see Fig. 2), significantly reducing the redundancy. The signature of the object
which is less diverse in color simply contains fewer elements. The resulting vectorS
served as the final color descriptor of each view.

3.3 Clustering of The Views

The question arises, how many views are there for each object? The easiest implementa-
tion would be to represent each human body with the fixed number of views. This tech-
nique, however, will create unnecessary redundancy for the objects undergoing smaller
changes in appearance. Another reasoning is to implement a simple thresholding scheme
to create new views, i.e for each object, while matching to the histogram of a blobĥ,
create a new view if:

ĥ > hk, ∀ k = 1,K (10)

Thus the creation of a new view will depend solely on the choice of the threshold. A
low threshold will result in overabundance of insignificant views created, a high one may
prevent useful views from being created.

To surmount the shortcomings mentioned above, we deal with the creation of new
views as with a clustering problem. LetJ = [ j1, j2, ... jL] be a vector of histogram obser-
vations, then each elementjl represents a sample in a 16-dimensional space (the number
of histogram bins). We applied standard k-means clustering algorithm to assign each ofL
samples to one ofK clusters. The clusters were then re-labeled to correspond their coun-
terpart from the previous step. We used a variant of theHungarian method for bipartite
graph matching to perform re-labeling (see [11]).

Initial clustering of the views was performed only after the object has been in the scene
for several seconds, to let the view samples constitute a set substantially representative
of the objects color properties. Then re-clustering was performed every 100 frames, to
ensure that the discriminatory power of the views does not suffer from the bad choice of
random initial centroids.

Clustering has a computational cost polynomially increasing with the number of sam-
ples. To overcome it, we have kept the number of samples constant once it reached a
certain level by withdrawing older samples and pushing new ones into vectorJ. This
especially makes sense, since the color descriptors of the object may become outdated
as it moves to the different environment or changes its configuration (e.g a person, tak-
ing off his coat). Thus the length of vectorJ was maintained at the level, sufficient to
accommodate 10 seconds of video (approx. 300 elements).

3.3.1 Distance measures

As the distance measure between two histograms therefore between the cluster centroids
and sample points in each cluster we used the earth movers distance (EMD) [15]. We have
chosen EMD as the distance measure because it takes into account colors in bins and can
be operating on 2-dimensional nature of histograms and does not suffer from quantization
problems. There is one more feature of EMD that was specifically useful in the case of
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Figure 1:(1) original image(2) blob detection
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Figure 2:(1)center cut from the 32x32 histogram in HS-space(2) normalized color sig-
nature (the values of H and S above each bar represent bin coordinates in HS space

Figure 3: Select frames from tracking sequence. Two moving objects merge into a single
blob (frame 502) and split (frame 542). The objects are color coded with BLUE corre-
sponding to the first object and GREEN to the second one. The correct labels are restored
after the merge-spllit sequence



the histograms that change over time. Let us consider a histogram of a human body at a
frame f and the histogram of the same body at the framef +1:

If the object undergoes a slight shift in hue or saturation values due the fluctuations in
ambient lighting, the histogram bins will shift as well. Now, computing a simple square
distance would result in the difference betweenh f andh( f +1) significantly higher then
the actual perceptual change taking place in the image. The use of EMD allows to avoid
excessively strict punishment for such shift both in hue and in saturation space. To form
the input suitable for EMD algorithm, each of the histograms was converted to a variable
lengthnormalized color signature as described in section 3.2.

Cluster centroids are usually computed as the average of all the points that belong
to the cluster. To do this, however, we need anaddition operation that has not been
defined for two signatures of different length. To overcome this problem, for each view
we accumulate the histograms from each view sample assigned to this view. This way
normalized color signature can be computed from aggregate view histogram at all times.

3.3.2 Clustering tendency

In many cases, such as people dressed in the uniformly colored clothing, a single view is
sufficient to grasp all the color information. Thus as the first step of the clustering process
it is necessary to determine if the view information is predisposed to have clusters and if
not then do not proceed with the clustering process. To determine the clustering tendency
we used one of the nearest neighbor measures method [9, 12].

To answer the question if the data should remain as one big cluster or be further split
into smaller clusters we perform the k-means clustering withK = 2 as described above.
Then, for the resulting distribution we compute:

I =
1
L

L

∑
l=1

fβ ( jl), (11)

wherefβ ( jl) is the fraction of theβ nearest neighbors ofj which have the same label
as j. This valueI ranges from 0 to 1 and will be the lowest when a clustering breaks apart
a compact group of data because the values off β ( jl) will be small along the borderline
between two clusters. If the two clusters are well separated in space,I will be close to 1.
We have chosen the empirical threshold ofI > 60 to be adequate to proceed with multiple
view/clusters.

3.3.3 Cluster validity

In fixed-cluster algorithms, the number of clusters is specified a priori, and the clusters
are formed from random initial conditions. Our clustering algorithm iterates for number
of clustersK ranging from 1 to 6. At each iteration the validity of clustering was assessed
using Dunn’s validity index [5]:

D = min
1≤i≤n

{
min

1≤ j≤n

{
min∀ci∈Ci ,c j∈Cj d(ci,c j)

max1≤ k≤nd0(ck)

}}
, (12)

whered(ci,c j) is the distance between clustersCi andCj (inter cluster distance),
d0(ck) - intra cluster distance of clusterck andn is the number of clusters.



We selectK which maximizesD thus maximizing inter cluster spread and minimizing
intra cluster variance.

3.4 Tracking

As described in section 3.1 at each frame our system is presented with a vector of blobs -
B = [B1,B2, ...BM]. As the result of the tracking algorithm applied at the previous frames
the system stores the state of each object being tracked in the vectorO = [O 1,O2, ...ON ].
Each element fromB is described by a vector of features, namely a 7-tuple< p̂ x, p̂y, v̂x, v̂y,

d̂x, d̂y, ĥ >, whereh is the histogram of the blob at the current frame. Each element from
O is described by a 7-tuple< px, py,vx,vy,dx,dy,H >, whereH is a vector of objects’
views. As the next step the global distance matrixD is computed as follows:

Di j = D(Bi,O j), (13)

where D - is the distance from blobi to the objectj. D is obtained as a weighted sum
of the distance of each of 6 pairs of view independent features, plus the distance fromh
to the closest view inH:

D(Bi,O j) = wp ∗ [d(p̂x, px)+ d(p̂x, px)]+ (14)

+wv ∗ [d(v̂x,vx)+ d(v̂x,vx)]+
+wd ∗ [d(d̂x,dx)+ d(d̂x,dx)]+

+wh ∗ min
∀hi∈H

[d(ĥ,hi)]

The weightswp, wv, wd and wh were determined empirically and are based on the
matching scenario. There are several scenarios to consider with respect toM.

Most of the time during the tracking process the number of blobsM detected is equal
to the number of objects in the systemM = N, when no full occlusions have occurred.
In this case the object position information is the most important, therefore, utilizing the
motion smoothness assumption we assign a greater value towv. According to the linear
motion velocity model thevx andvy will remain constant and the size of the object will
change only slightly. We setwv andwd to be higher values correspondingly.

Another type of matching we perform in case when eitherM > N or N > M, which
reflects either objects disappearing due to occlusions (merge event) or objects appearing
due to a split event. Note that we did not consider objects exiting from the scene and
reappearing later. The occlusions are caused either by the background object or by another
moving person. For later, bothmerging bodies are assigned to the same blob and are
tracked as one until the split event occurs. The blob size becomes irrelevant (w d = 0) and
values ofwp andwv are also reduced to minimum: the tracking is performed mostly based
on the color information. In this scenario multiple views serve to disambiguate between
two objects’ details.

Subsequently, to matrixD we apply the algorithm for close to optimal object-to-blob
matching outlined by Rangarajan and Shah that runs inO(max(M,N)). The algorithm
tries to minimize the cost of local and global matches and the same time. For more details
see [14].



4 Experimental results

The real-time tracking system in place processes the input from a DirectX video stream.
This is a video-file or a camera, connected via the Fire-Wire port. The system performed
at approximately 10 Hz on input frames 320 by 240 pixels on a AMD K7 1GHz processor.
The tracker was tested on the sample sequences with up to 3 moving subjects both indoors
and outdoors and in the free-tracking experiment with up to five arbitrary moving subjects.

The algorithm demonstrated the steady ability to handle merge-split events for the
subjects with similar clothing and to maintain the number of the objects in the scene con-
stant once they enter. Tracking through longer periods of time with subjects re-entering
poses a different problem and will be addressed in future work.

5 Conclusions and future work

In this paper we presented a new algorythm for tracking moving objects in the situation
where these objects are occluded. The key elements presented were the adaptive back-
ground model, utilization of multiple views for each object to store a more detailed and
exact representation of each human body. Additionally, procedures to minimize the cost
of local and global matching have been employed. The algorythm allows to address the
situation of occlusions effectively and to detect merging and splitting events. It provides
the flexibility to the system necessary for tracking in real-life environments. The test-
ing sessions demonstrated the stable and high-quality performance of the program. Each
object in the video sequence has been identified and tracked during several merge-split
events. Although the algorythm is fully implemented and can be used in various applica-
tions (such as security applications), there are several areas of future work and develop-
ment. Thus, improvements can be made to make the background subtraction method truly
adaptive. Currently, if a moving object enters a scene but then stops it will be gradually
blended into the background model. By determining the type of the object we can either
exclude it from further background model accumulation process (e.g. a human) or treat it
as a part of the background (e.g. a briefcase).

Another characteristic which can be improved is related to our notion of a view. Cur-
rent system is designed around (although is not limited to) the human subjects walking
in the upright posture. We are currently working on broadening the definition of view to
include the transitions in objects shape, such as sitting down and standing up.

As one of the future developments of this work we plan to incorporate human body
shape descriptors, e.g.Hu-moments, as one of the view-based features.
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