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Abstract

This paper presents a real time approach to locate and track the upper
torso of the human body. Our main interest is not in 3D biometric accuracy,
but rather a sufficient discriminatory representation for visual interaction.
The algorithm employs background suppression and a general approxima-
tion to body shape, applied within a particle filter framework, making use of
integral images to maintain real-time performance. Furthermore, we present
a novel method to disambiguate the hands of the subject and to predict the
likely position of elbows. The final system is demonstrated segmenting mul-
tiple subjects from a cluttered scene at above real time operation.

1 Introduction

Human-computer interaction (HCI) is a discipline concerned with the design, evaluation
and implementation of interactive computing systems for human use With the rapid de-
velopment of fast, inexpensive PCs, HCI not only has a place in expensive industrial
applications, but also in the home where users can control electronic equipment or inter-
act with artificially intelligent constructs. HCI utilising video streams is of great benefit
to handicapped or injured people who have limited control of their limbs, as well as en-
hancing the usability of cumbersome devices.

The overall objective of this work is to create a visual HCI tool using an un-calibrated
monocular camera system in a cluttered environment. Current progress locates and tracks
key body parts of the upper torso in a hierarchical manner. Thereafter, pose and movement
of these components will be used for gesture recognition purposes.

Four primary underlying processes have been identified to realise this goal. These
processes include background segmentation, human tracking, gesture recognition, and
lastly, visual interaction and representation. The focus of this paper however lies within
tracking key parts of the human body. For robust HCI, it is essential that the system
operate in real-time. This research presents a tracking system running at 48 frames per
second on a 2.8 GHz CPU.

2 Related Work

The task of tracking humans has received intense interest within the literature. Such work
is too numerous to mention here but the vast majority of techniques fall into 2 areas: 3D
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reconstruction of the human or 2D appearance based approaches. Since the seminal work
of Hogg [4] articulated models (generally constructed from geometric primitives) have
been used in model based approaches to tracking humans. More recent extensions to this
approach use particle filtering frameworks, also known as the Condensation Algorithm
[6]. Deutscher et al [3] presented the Annealed particle filter with an articulated geomet-
ric body model to reconstruct a moving human in 3D. The purpose of the adaptation was
to reduce the search time as particle filters tend to be slow in implementation due to the
complexity of the approach and dimensionally of the search spaces. The approach also
required multiple cameras to overcome ambiguities, resulting in intensive off-line pro-
cessing and limiting the application to calibrated multi-camera studios. Sidenbladh [9]
overcame the constraints of multiple cameras by employing extremely strong motion pri-
ors (again in a particle filter framework) to overcome visual ambiguity. Results were pre-
sented tracking a walking human in a monocular image sequence. The prior, constructed
from motion capture data, makes it difficult to extend to more general applications where
the motion of the subject is less well defined.

Particle filters are popular as they provide a probabilistic framework which can sup-
port multiple hypotheses, however their susceptibility to converge upon maxima and the
large population sizes required for accurate modelling of the posterior mean that typically
they are not always suitable and slow in operation. The complexity of the problem also
lies in the complexity of the 3D model to be fitted to the image. However, accurate 3D
reconstruction is often not necessary and a less accurate 2D model is often sufficient.
Ioffe and Forsyth [5] assumed that an image of a human can be decomposed into a set of
distinctive segments modelled in 2D. A parallel edge segment detector is used to locate
image regions that could possibly be body parts. Once the segments have been detected,
they are assembled into groups that could represent a person, using a pre-defined top level
classifier.

A comparable example to the overall objective of our work is Pfinder [11], as it makes
use of the 4 processes mentioned in Section 1. It uses a blob representation to extract a
structurally meaningful segmentation of body parts. Feature vectors are formed at each
pixel by adding spatial co-ordinates to the colour components of the image. These vectors
are then clustered so that similar properties (location and colour) are combined to form
coherent connected regions or ‘blobs’. Many approaches make use of colour to identify
crucial body parts such as the head and hands. A direct method of doing so is to search
for skin tone. This technique is popular, but still proves problematic in cluttered scenes
where background objects (such as wooden furniture) is often misclassified as skin. Fur-
thermore, the sole use of simple cues such as colour is insufficient as the head and hands
are indistinguishable. Sherrah and Gong [8] take a view-based approach under a Bayesian
framework, in which motion, skin colour and intensity based orientation measures are ex-
tracted in order to overcome these ambiguities.

Our approach brings together various elements of this work to track humans in clut-
tered scenes. Background suppression forms a crude segmentation of foreground from
background, then a particle filter is used to locate and track the human. We demonstrate
how an integral image can be used to provide the real-time operation of a particle system.
From this initial estimate of gross body location, a person specific colour model is learned
to model the head and hands and tracked with 3 further dedicated particle filters. A proba-
bilistic model of body configurations is then used in a novel manner to both disambiguate
the hands and provide an estimate for the elbow positions.



Figure 1: System Overview

3 System Overview

Our approach to the tracking of body parts includes various steps which are inter-dependent.
With reference to Figure 1, a brief overview of the steps is listed below:

1. Acquire a colour image of the user using a single un-calibrated camera.
2. Segment the subject from the background.
3. Create an integral image (see section 5) from the binary image to improve

system performance in terms of robust tracking and speed.
4. Initialise a particle filter system to track the torso, thereby providing the scale

and position information of the user. These outputs form the prior data that
is fed back into step 1 to continue tracking of the torso.

5. Estimate the scale and position of the user’s head and hands based on the
torso data of step 4.

6. Build a skin probability model from colour information of the located head
region.

7. Detect regions of skin tone using the on-line skin model. An integral image
of the detected regions is created as in Step 3.

8, 9. Initialise 3 particle filter systems for the head and hands.
10. From the outputs of the particle filters, build a model of the upper body.
11. Using the prior model of body configurations, disambiguate the hands from

each other.
12. From the prior, infer the elbow positions of the disambiguated model.



4 Tracking of Body Parts

Figure 2 (a) illustrates the Renaissance subdivision of the human figure into eight lengths,
each of which is equal to the length of the head measured from the chin to the top of the
skull. For the purpose of this paper, these parts will be referred to as skeletal units.

We have chosen to use four particle filter systems, each dedicated to tracking a spe-
cific part (torso, head, left hand and right hand filters), as this reduces the dimensionality
of the search space, and therefore the number of particles required to estimate the poste-
rior. These are applied in a hierarchical manner such that the gross location of the torso
influences the predicted priors of the latter filters. In addition to position, the size of the
head and hand masks is also dependent on that of the torso mask, as once the torso model
has been fitted, an estimate of the skeletal unit is obtained.

4.1 Background Suppression

Like Pfinder [11] where a single Gaussian was used to model the variance of background
pixels, we assist tracking via a static camera assumption and background suppression.
Although this is not the novelty of the paper it is state of the art and as such a brief de-
scription is included for completeness. Our background removal algorithm was originally
developed for exterior visual surveillance and relies upon modelling the colour distribu-
tion with a Gaussian mixture model on a per pixel basis. This is learnt in an online fashion
using an iterative approximation to expectation maximisation. The results of which are a
binary mask where black denotes background and white the foreground object of inter-
est. For further details the interested reader is directed to [7]. This binary mask is then
converted to an integral image and passed to the torso particle filter for tracking.

4.2 Tracking the Torso

Referring to Region A of Figure 2(b), the torso mask is constructed to accommodate the
head and shoulders, and extends down to the waist, where major spinal rotation occurs.
A secondary outer mask, Region B, is created such that Area(A) = Area(B).

The motivation behind using such a coarse body-shaped mask lies in the application
of integral images (see section 5). The use of integral images allows for large particle
population sizes for robust tracking, while maintaining real-time performance.

This mask is applied to the segmented binary image of the user: the sum total of all
non-zero valued pixels in each region is computed, and with a slight abuse of notation, is
denoted ∑A and ∑B. The net result is ∑A−∑B (with negative values set to 0), which
is then normalised by Area(A) to give a fitness score S = 1

Area(A) |∑A−∑B|, in the range
[0,1]. This score is computationally inexpensive to calculate, contributing to the real-time
aspect of the particle filter tracking system. Note that the bottom section of both the inner
and outer windows coincide, preventing the lower torso from influencing S.

Figure 3 illustrates situations that yield extremes of S. In Figure 3(a), the entire mask
lies within the subject. Since Area(A) = Area(B), ∑A ' ∑B, resulting in S ' 0. The mask
in Figure 3(b) is very large, providing a large value for ∑A. However, S will be low due to
the normalisation by Area(A). The highest value for S arises in a situation demonstrated
by Figure 3(c). The subject occupies the majority of Region A, with little overlap into
Region B. Here ∑A ' Area(A) and ∑B ' 0, resulting in a high score for S.



(a) (b)

Figure 2: (a) Virtuvian Man (b) Torso mask

The polygon is fitted to the image using a similarity transform to minimise S, allowing
the scale, position and rotation of the torso to be extracted. However, the use of the integral
image precludes rotation from the estimate. This is acceptable as we assume the subject
remains upright. (See Section 8 for further discussion). The scale plays a particularly
useful role in the reconstruction of the user as the skeletal unit can now be determined. A
combination of this information leads to a reliable estimation of the position and size of
the head - it is assumed that the head exists in region H of Figure 2 (b). Arm length and
hand size can also be determined, all of which is fed to latter filters.

(a) (b) (c)

Figure 3: (a) Low Score (b) Low Score (c) High Score

4.3 Tracking the Head and Hands

With a reasonable estimate of head size and position, a skin model specific to the user’s
face is built on-line. Skin tone of the hands is assumed to be the same as that of the face,
and hence the same skin model is used for hand detection.

A prior bivariate Gaussian (Hue and Saturation) was constructed from skin samples
taken from a selection of natural images. This produces a model far too general for use in
robust segmentation, but does however allow us to discard pixels that are outliers. From
these inliers in region H, a new bivariate is learned, creating a refined skin model.

The head and hand filters function in a similar manner to the torso filter, except in this
case skin-tone valued pixels contribute to ∑A and ∑B.



5 Integral Images for Real-Time Performance

Rectangular features can be computed quickly using an intermediate representation called
an integral image [10], also known as a summed area table in texture mapping [2]. The
value of the integral image at point (x,y) is the sum of all the pixels above and to the left
of (x,y), inclusive:

II(x,y) =

x
∫

i=0

y
∫

j=0

I(i, j)d j di (1)

where II is the integral image, and I is the original image. In the case of a discrete
image, this is approximated by ∑∑ I(i, j).

(a) (b) (c)

Figure 4: Integral Image Computation

The entire II can be computed in this manner for all (x,y), however it is more efficient
to determine the integral image incrementally, rather than conducting a double summation
of the previous pixels:

∀x,y II(x,y) = I(x,y)+ II(x,y−1)+ II(x−1,y)− II(x−1,y−1) (2)

Using the integral image, any rectangular sum can be computed in three mathematical
operations. In Figure 4(a), The value of the II at point (x1,y1) is the sum of the pixels
in Region A (∑A)of the original image, II(x2,y1) = ∑A+∑B, etc. ∑D can therefore be
computed as

∑D =

x2
∫

i=x1

y2
∫

j=y1

I(i, j)d j di ≡ II(x2,y2)− II(x2,y1)− II(x1,y2)+ II(x1,y1) (3)

The body part masks of Section 4 have been constructed from rectangular shapes
such that their sums can be computed in the same manner mentioned above. Figure 4(c)
visually represents the integral image of Figure 4(b). Using the integral image, ∑A can
be computed as (3−2−4+1)+(6−5−7+8).

Integral images applied within a particle filter framework allow for real-time perfor-
mance as the incremental summation of non-zero pixels to determine ∑A would prove
to be too computationally expensive. For illustrative purposes, let the best fit torso mask



of the user occupy 12 500 (100x100 + 50x50) pixels. In order to determine ∑A, 25 000
operations(1 query and 1 addition) would have to be conducted. A typical particle filter
may contain > 500 masks, resulting in a total of 25 000 x 500 = 12.5 million operations.
In addition, the greater the image resolution, and the closer the user is to the camera, the
greater the size of the mask, making the computation of ∑A even more costly.

Taking the integral image into account, ∑A is computed by (3− 2− 4 + 1) + (6−
5−7 + 8), a mere 7 mathematical operations. The initial overhead of the integral image
calculation is dependent on image resolution, with a total of ≈330 000 operations when
working with 1

2 PAL images (384x288). However, once the integral image has been deter-
mined, the score calculation for each mask is independent of image resolution and subject
size. For a population of 500 masks, the total number of operations = 333 000 + (500 x 7)
= 336 500, 2.7% of that of the incremental summation method. The larger the population
size, the greater the benefit of the integral image.

6 Prior Data for Pose Estimation

The converged particle filter systems provides the position of 8 points on the body, namely
the hips, shoulders, hands and head (chin and hairline). Two prior models (φ and ψ)
of body configurations have been built from 4647 representative examples from image
sequences of subjects performing deaf sign language. Coloured gloves and elbow bands
were used for ease of acquisition of groundtruth data for prior model construction. φ
contains concatenated coordinates for the 8 points mentioned above, while ψ contains 10
points as the elbow positions are also included.

With these prior data sets, the left and right hands can be disambiguated, and the
undetermined elbow positions of the tracked subject can be inferred.

6.1 Disambiguating the Hands

A 16x16 covariance matrix Covφ , is formed from data set φ , where Covφ = 1
N−1 (φi −

µφ )(φi − µT
φ ). The 8 x,y coordinates of the tracked user are concatenated to form two

feature vectors Y′
1,Y

′
2 ∈ ℜ16, where the coordinates of the hands are swapped in each

vector. To determine which vector fits the prior model best, the Mahalanobis distance d
is determined. Y′

j is chosen according to the smaller of the two distances:

j = argmin2
i=1

(
√

(Y′
i −µφ )Cov−1

φ (Y′
i −µφ )T

)

(4)

Awkward poses, for example arms crossed over each other, yield a large d, thereby
indicating that the pose is unnatural. In such a situation, the hand filters are either switched
or re-initialised according to the size of d.

6.2 Estimation of Elbow Positions

Image cues for the detection of elbow positions are not apparent, and predictive methods
need to be employed in order to offer a starting point with which to search the image space.
Inverse kinematics prove to be cumbersome in 2D applications, and also offer multiple
solutions as the arm length ‘changes’ due to perspective. An approach that makes use of
the prior model offers a relatively accurate starting point for each elbow.



Eigen decomposition of Covψ(ℜ20) yields an eigenvector Matrix P, and a correspond-
ing set of eigenvalues b. In matrix form, any body configuration X can be reconstructed
as the mean plus the weighted sum of the eigenvectors:

X = X̄ψ +Pbnew (X,b(new) ∈ ℜ20) where −3
√

bi < bnew
i < 3

√

bi (5)

X̄ψ is the mean vector of data set ψ . Y′
j represents the disambiguated 16D model

of the tracked user, and we attempt to construct the vector Y ∈ ℜ20, the original model
including estimates for the elbow positions. To achieve this, the elbow data is stripped
from P, giving a 16x20 matrix P′. Similarly, the mean elbow positions are stripped from
X̄ψ , giving X̄′

ψ ∈ ℜ16. A new set of projection weights bnew can be calculated by re-
arranging Equation 5:

bnew = P′−1(Y′− X̄′
ψ) (6)

With this new set of weights, the estimated model Y can now be determined:

Y = X̄ψ +Pbnew (Y ∈ ℜ20) (7)

7 Results

Following background removal and the formation of an integral image, a k-means clus-
tering of foreground pixels is performed to extract an initial estimate and size for the
position of each user. k is selected by hand to be the number of subjects to track, alter-
natively a connected component analysis of the binary image can be used to provide an
estimate. Over estimation is of minor concern, as incorrectly initialised particle systems
will diminish quickly. We choose to concurrently run k distinct particle filters, initialised
with Gaussian distributions from the k component estimations. In terms of modelling the
posterior, this makes little difference but it provides a convenient partitioning of the popu-
lation samples for monitoring and re-initialisation. In order to cope with user occlusions,
the means of each particle system are compared to each other to detect when more than
one particle filter has converged upon a single solution – at this point it is reinitialised. In
the examples, each torso filter consists of 500 particles with a Gaussian white noise drift
term. The mean of the top 10% of particles from each system is selected as the likely es-
timate of position (shown in figures 7 and 6). From this mean hypothesis the head region
is estimated and is used to build the HS bivariate colour model to represent skin.

A data set of 7600 representative body configurations was extracted from a video
sequence consisting of a user wearing coloured gloves and elbow bands for ease of
groundtruthing. This data set was then separated into 4647 training examples and 2953
unseen test examples. PCA was performed upon the training set and the test data was
used to estimate the elbow positions as detailed in section 6. Figure 5(b) shows the mean
and std dev error for the estimates. It is obvious that the manifold on which the data set
lies is unlikely to be linear and is therefore not well approximated by a single Gaussian.
We therefore use a Gaussian mixture model to represent the training set. However, the
optimum number of components must be selected. Following [1] we use the cost function
from k-means to estimate the number of components. Figure 5(a) shows how the cost



decreases as the number of components increases. The natural number of clusters is said
to be the number for which further increases does not produce significant gain in overall
cost. From the figure we would estimate this to be in the region of 100 components. This
is confirmed by Figure 5(b) showing the reconstruction error for mixture models with an
increasing number of Gaussians. Again the highest benefit in terms of error minimisation
is in the region of 100 Gaussians. Further increases reduce the generalisation of the model
as it will eventually regress to a nearest neighbour approach [1].
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Figure 6 shows a subject performing deaf sign language, with the torso, head and
hands tracked. Using a Gaussian mixture model of 100 components, the estimated elbow
positions are indicated by PR and PL. The body configurations were also used to test the
validity of the hand disambiguation method (Section 6.1), and the hands were correctly
disambiguated in 98% on the test examples.

Figure 6: Estimation of elbow positions

Figure 7 shows snapshots of an image sequence of two users moving in a cluttered
scene. It is apparent how the torso filter of each system contends with the two differently
sized users, and their forward movement with respect to the camera. The hand filters are
colour coded indicating the distinction between left and right hands after disambiguation.

8 Conclusions and Future Work

Knowledge of Da Vinci’s human figure schematic has allowed for the use of coarse body
shape estimates. These estimates, combined with the invaluable speed benefits of integral



Figure 7: Tracking multiple people in a complex, cluttered scene

images, have made a real-time particle filter system achievable. Tracking has proven to
be even more robust as the particle population sizes can be increased significantly with
minimal influence on system performance. A small limitation of the integral image is
that it cannot be used in the detection of rotated body parts, however future work aims
to conduct integral images on rotated versions of the image sequence frames in order to
overcome this constraint.

Relatively accurate elbow positions are estimated based on the current prior model on
body configurations. A prior built from more extensive data should prove to be able to
cope with a wider variety of users, and offer even more accurate positional estimates.
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