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Abstract 
 

A new practical method is developed for 3D reconstruction from an image 
sequence captured by a camera with constant intrinsic parameters undergoing 
circular motion. We introduce a method for enforcing the circular constraint 
in a factorization-based projective reconstruction. This is called a circular 
projective reconstruction. Given a turntable sequence, our method uses a 
hierarchical approach to reconstructing the objects and cameras, which first 
computes a circular projective reconstruction of a sub-sequence and then 
extends the reconstruction to the complete sequence. Camera matrix and the 
motion parameters, i.e. the rotation angles, are computed iteratively in a way 
that minimizes the 2D reprojection error. Thus, an optimal reconstruction is 
obtained upon convergence. The algorithm is evaluated using real image 
sequence. 

 

1  Introduction 
 
Considerable attention has been devoted to efficient 3D reconstruction of objects 
obtained from circular motion in recent years. Traditionally, the reconstruction process 
was first done by careful calibration [5,6,9]. More recently, this problem was dealt with 
directly from uncalibrated image sequences [2,3,7,10,12]. As shown in [3,11], from 
uncalibrated images alone, the reconstruction from circular motion can be only 
determined up to a two-parameter ambiguity, but the rotation angles can be determined 
uniquely. There exist several methods to compute the rotation angles [3,4,7,13]. 
Fitzgibbon et al. [3] computed the rotation angles using trifocal tensors. Mendonca et al. 
[7] used surface profiles to estimate the epipolar geometry, and then the rotation angles. 
A method based on fitting a conic section was presented in [4,13]. The conic fitting 
method is demonstrated to be simpler than the existing ones. However, the optimization 
is only defined to minimize the geometric distances of chosen points to the fitted conic, 
but does not involve an optimal estimate of the camera matrix. Zhong and Hung [8] 
showed that camera matrices could be upgraded from projective reconstruction to 
metric reconstruction with a two-parameter family by using the knowledge of rotation 
angles. This suggests that it is possible to estimate the rotation angles as well as the 
camera matrix simultaneously within the reconstruction process, instead of after a 
projective reconstruction, e.g. computation of fundamental matrix. 
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In an image sequence captured from circular motion, feature correspondences often 
appear in consecutive images, but are missing in others. The missing data generally 
hinders the singular value decomposition (SVD). Consequently a general projective 
reconstruction based on singular value decomposition cannot be applied to an image 
sequence with too many missing points. A hierarchical reconstruction approach where 
the complete sequence is divided into a number of sub-sequences, is appropriate in this 
case, as projective reconstructions are carried out on each sub-sequence which usually 
contains few, or even no missing data. Another advantage of hierarchical reconstruction 
is that error can be distributed evenly over the sequence [2,14]. 

In this paper, we combine the methods of [1] and [8] and propose a new algorithm 
to estimate the camera matrix and the rotation angles by minimizing the 2D reprojection 
error. In this algorithm, a hierarchical approach in which the complete sequence is 
partitioned into several sub-sequences is adopted to avoid the problem caused by the 
missing data and to make the algorithm more efficient. The factorization-based method 
in [1] is modified and the circular constraint is explicitly enforced to obtain a circular 
projective reconstruction for one sub-sequence. It is shown that computing the circular 
projective reconstruction of one sub-sequence is sufficient to obtain the circular 
projective reconstruction of the complete sequence. The algorithm ends with a bundle 
adjustment which is also conducted with the minimization of 2D reprojection error. 
Thus the algorithm ensures that the reconstruction is obtained in an optimal way. 

The paper is structured as follows. In section 2 circular motion geometry is 
reviewed and the concept of circular projection reconstruction is introduced. In section 
3 the computation of circular projection reconstruction is discussed. The new algorithm 
is then presented in section 4. Experimental results are given in section 5. Finally, some 
concluding remarks are given in section 6. 
 

2  Circular motion geometry and circular 
projective reconstruction 
 
Circular motion is a special kind of planar motion. In terms of screw decomposition, 
there is zero translation along the screw axis and the screw axes of each Euclidean 
action coincide in this motion [3]. It is also called turntable motion as it can be 
modelled as a rotating object viewed by a static camera. For cameras with constant 
intrinsic parameters, the mathematical model of camera matrices P is very simple, as is 
shown in the following. 

Without loss of generality, we can define the motion plane as the XY plane of the 
world coordinate system. Then, the motion of each camera with respect to the first 
camera can be described by a rotation angle θ about the Z axis [8]. Suppose the first 
camera C1 is at position r on the world X axis and the rotation of C1 about its centre 
relative to the world frame is R. Then, the projection matrix of C1 may be written as 
 [ ]|1 =P KR I t  

where K is an upper triangular matrix representing the camera calibration matrix, I is 
the identity matrix, and [ ]0 0 Tr= −t .  

Referring to this camera, a second camera rotated by θi from C1 about the Z axis is 
given by 
 i 1 i=P P Q  (1) 
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is a rotation matrix about the Z axis in homogeneous coordinates. 
Equation (1) gives a concise description of the geometry of circular motion. 

Projection matrices can be expressed in terms of the first camera matrix and a rotation 
matrix. Suppose we have obtained a reconstruction that satisfies (1). Such a 
reconstruction has a property defined in Euclidean space, i.e. θi. However, it is not fully 
Euclidean because the first camera matrix P1 is only determined up to a two-parameter 
family [7]. Therefore this is the nearest metric reconstruction we can obtain from 
images alone. We will call this circular projective reconstruction to indicate the 
recovered circular constraint θi while differentiating it from Euclidean reconstruction, 
and correspondingly, P1 as the reference camera matrix. One of the advantages of 
carrying out circular projective reconstruction over general projective reconstruction is 
that the results are usually more reliable and robust. This has been discussed in [14] and 
is also demonstrated in our experimental results. 
 

3  Computing circular projective 
reconstruction 
 
This section describes the computation of circular projective reconstruction. Unlike the 
method given in [3] where two-view and three-view tensors were computed to obtain a 
reconstruction, we use a multiple view approach. The main idea is to parameterize the 
reconstruction (1) using a common technique, so that the reference camera matrix and 
the motion parameters are estimated iteratively. We first briefly introduce the 
factorization-based projective reconstruction method. The circular projection 
reconstruction is then formulated. 
 
3.1 General projective reconstruction 
 
Let 1

T

ij ij iju v =  x  be the image of a 3D point 1
T

j j j jx y z =  X  on the ith 

view, and λij be the corresponding projective depth to xij, the perspective projection is 
formulated as 
 ij ij i jλ =x P X  

where Pi is a 3 x 4 projection matrix. In a factorization-based projective reconstruction 
method, all the views, image points and 3D points are considered together to form three 
matrices such that 
 { }ij ijλ =x PX  (3) 

where the matrix { }ij ijλ x  consisting of all image points and their corresponding 

projective depths is known as the scaled measurement matrix, 1 2, , ,T T T
m =  P P P P…  is 



called the joint projection matrix, and [ ]1 2, , n=X X X X…  the projective shape matrix. 
If the projective depths λij are known, then the scaled measurement matrix may be 
factorized into the joint projection matrix and the projective shape matrix, which is at 
most rank 4. The factorization is done by singular value decomposition. 

Tang and Hung [1] turned this problem into a problem of minimizing the 2D 
reprojection error by writing (3) as 
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problem is solved by iteratively estimating Pi, Xj and λij using weighted least squares 
(WLS) method. 
 
3.2 Circular projective reconstruction 
 
Consider a circular projective reconstruction given by (1). By substituting (1) into (4), 
we get another minimization problem 
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Note that the number of variables in the joint projection matrix is now reduced from 
11m to m+11 where m is the number of views involved. 

Although λij, Xj, and P1 can be readily computed in (5), e.g. using WLS method, the 
computation of the rotation matrix Qi is less obvious. To see this, assume λij, Xj, and P1 
are already known and denote the 3D structure by [ ]1 2, , n=X X X X… , then we may 
write (5) in matrix form as 
 ( ) 2

1min .*
i

i i i F
−

Q
M W P Q X  (6) 

where Mi is the weighted 2D point matrix of the ith view and Wi is the corresponding 
weighting matrix. Using (2), (6) can be transformed equivalently to 
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Let pi be the ith column of P1 and 1 2

TT T =  X X X� �  with 1X�  containing the first two 

rows of X and 2X�  the last two rows of X. Then it is easy to see that in (7), Ai is a 3n x 

2 matrix formed by rows of [ ]( )1 2 1.*iW p p X�  and [ ]( )2 1 1.*i −W p p X� , and Vi is a 

3n x 1 vector generated by taking elements of [ ]( )3 4 2.*i i−M W p p X�  row by row. 
In (7), we might take cosθi and sinθi as two independent variables and use least 

squares method to obtain a solution. However, there is no guarantee that the computed 



cosθi and sinθi satisfy ( ) ( )2 2cos sin 1i iθ θ+ = . Consequently, the computed Qi is not 
necessarily a rotation matrix. In the following, we propose to apply householder 
transformations to obtain the desired rotation matrix Qi. 

Let n∈v  be a nonzero vector. An n x n matrix H of the form 
 2 /T T

v = −H I vv v v  

is called a Householder matrix and the vector v is called a Householder vector. An 
important property of a Householder matrix is that it is orthogonal. Suppose H is a 
Householder matrix such that 
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Then, a solution minimizing the norm 
2

2

cos
sin

i
i i

i

θ
θ

 
− 

 
HA HV  will also be a solution to 

(7) since H is orthogonal. 
Henceforth within this section, we assume such a Householder matrix is already 

multiplied to (7). We will use c and s to represent cosθi and sinθi for simplicity. With 
this notation, the norm we want to minimize is given by 
 ( ) ( )2 2

1 2 1 4 2n a c a s v a s v= + − − − . (8) 

Let ( )tan it θ=  and 2 21/ 1 , / 1c t s t t= + = + . Solutions of (7) are the roots of the 
differential equation of (8) with respect to θi, which satisfy 
 ( ) ( )( )2 21 1a t bt d et t− + = − + +  

where 2 2 2
1 2 2 1 4 1 2 2 4 1 1, , ,a a a b a a a d v a v a e v a= − = − + = − − = . 

Taking square on both sides of the above equation gives rise to a quartic polynomial 
equation in t 
 4 3 2

4 3 2 1 0 0p t p t p t p t p+ + + + =  (9) 

with 2 2 2 2 2 2 2 2
4 3 2 1 0, 2 2 , 2 , 2 2 ,p a e p ab de p b a e d p ab de p a d= − = − = − − − = − − = − . 

Note that two solutions for c and s can be obtained from a solution t to (9), namely 
2 21/ 1 , / 1c t s t t= + = +  and 2 21/ 1 , / 1c t s t t= − + = − + . Thus there are totally 8 

possible solutions. The correct result is then determined by substituting all these 8 
solutions back into (7) and choosing the one resulting in the smallest norm. 

We have shown that a rotation matrix which is a solution to (5) can be computed by 
solving a quartic polynomial equation. This enables the rotation angle to be determined 
in four quadrants since the cosine and sine of the angle are computed ultimately. Now 
that there is a way to compute the rotation angle, a circular projective reconstruction 
can be obtained by enforcing the circular motion constraint in a general projective 
reconstruction. In particular, we estimate λij, P1, Xj and Qi iteratively. In next section, 
we will discuss the hierarchical reconstruction of an image sequence by means of 
circular projective reconstruction. 



 

4  Hierarchical reconstruction with circular 
constraint 
 
The circular projective reconstruction algorithm presented in last section can be applied 
to a sequence with any numbers of images. As a result, a simplified hierarchical 
approach can be employed to obtain the complete reconstruction by just computing one 
circular projective reconstruction from a sub-sequence, and then extending to the whole 
sequence. After that, bundle adjustment can be used to refine the reconstruction.  
 
4.1 Obtaining circular projective reconstruction 
 
To compute a circular projective reconstruction, we need a rough estimate of the 
reference camera matrix P1 as well as the rotation angles. This can be achieved by first 
computing a general projective reconstruction and then rectifying it to a circular 
projective reconstruction. 

As shown in section 3, assuming the errors are normally distributed in 2D images, 
the general projective reconstruction can be obtained by minimizing the 2D reprojection 
error [1]. After that, we can use the conic fitting method presented in [4] to compute the 
rotation angles. It is recommended to conduct a general projective reconstruction prior 
to computing the rotation angles, as this process gives a better estimate of the rotation 
angles because 2D reprojection error is minimized during the reconstruction. 

After we have obtained a general projective reconstruction and an estimate of the 
angles of rotation, we are able to compute the reference camera matrix P1 for the sub-
sequence of interest. This can be done by using the rectification algorithm given in [8]. 
The underlying idea is that a circular projective reconstruction is related to a general 
projective reconstruction by a projective transformation. Combining at least three 
projective cameras, the non-singular 4 x 4 rectification matrix and the reference camera 
matrix P1 can be computed by the least squares method. The circular projective 
reconstruction is then estimated using the method given in section 3.2. 
 
4.2 Extending the reconstruction 
 
In a turntable sequence captured by a camera with constant internal parameters, the 
reference camera matrix of the circular projective reconstruction obtained from one 
sub-sequence is also constant throughout the complete sequence. Therefore after 
computing a circular projective reconstruction, it remains to identify the rotation angles 
between successive views in other sub-sequences. The circular projective 
reconstruction just obtained can be used to accomplish this task too, as is discussed in 
the following. 

Consider three images k, k+1 and k+2 in which correspondences have been 
established. Suppose the rotation angle between image k+1 and k+2 is known and 
denoted by θk+1, and the reference camera matrix is P. We now want to estimate the 
rotation angle between image k and k+1, i.e. θk. 

Let [ ]1 T
i i ix y=x  be a point on image k and [ ]Ti i i i iX Y Z T=X  be the 

reconstructed 3D point, then we have 



 i k i≅x PQ X . (10) 

where kQ  is a rotation matrix as defined in (2). Note that the rotation angle θk is 
defined with respect to the reference camera matrix P and is a relative quantity. 
Therefore the value depends on how Xi is reconstructed. 

Because equation (10) is defined up to an unknown scale factor, only two of the 
three equations are linearly independent. We may use cross product to eliminate the 
homogeneous scale factor, which yields 
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where piT are the rows of P. 
This is an inhomogeneous linear equation in cosθk and sinθk. It can be verified that 

by writing 
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In the above derivation, we assume the 3D point Xi is known. Indeed, because the 
camera matrices of image k+1 and k+2 are already known, i.e. P and PQk+1, 
respectively, the 3D points visible to these two images can be reconstructed using the 
optimal triangulation method [14]. The rotation angle θk is then computed by solving 
(12) using the method proposed in section 3.2. The θk computed in this manner has an 
inversed sign to θk+1 because image k is preceding image k+1 and X is reconstructed in 
such a way that the camera matrix of image k+1 is used as the reference camera matrix. 

Similarly, suppose that the last two images in the current sub-sequence are l and l+1, 
then the rotation angle between image l+1 and image l+2 can be computed in the same 
way. This process is repeated against other images in the preceding and subsequent sub-
sequences, and sub-sequence by sub-sequence, until all rotation angles in the complete 
sequence are computed. After that, we can use the trifocal tensor to remove outliers in 
each image triplet. 
 
4.3 Bundle adjustment 
 
In bundle adjustment, we combine all the estimated rotation angles, the reconstructed 
structure, and the reference camera matrix to refine the result. The missing data problem 
no longer exists since we have already obtained a circular projective reconstruction for 
the complete sequence. The effectiveness of bundle adjustment is justified by the 
connection between consecutive sub-sequences, i.e. the common 3D points captured in 
the last few images of one sub-sequence and the first few images of the subsequent sub-



sequence. The bundle adjustment is carried out as another circular projective 
reconstruction. Hence the method in section 3.2 can be used again. But this time, it is 
run with the complete set of images. 
 
4.4 Algorithm summary 
 
Suppose feature points are already tracked with some outliers. The complete algorithm 
is summarized as follows. 
1. Partition the complete sequence into sub-sequences. 
2. Compute a general projective reconstruction on the sub-sequence with the highest 

numbers of matched points and views. 
3. Compute the circular projective reconstruction for that sub-sequence. 
4. Compute the rotation angles between views in other sub-sequences using the 

circular camera matrix P1 and the structures reconstructed in step 3 and remove 
outliers via the trifocal tensor. 

5. Apply bundle adjustment to the complete sequence. 
 

5  Experimental results 
 
The reconstruction algorithm is tested on the popular dinosaur sequence from 
University of Hannover by courtesy of Oxford Vision Geometry Group. We first 
choose points that are visible to more than 8 views and form a sub-sequence containing 
views from 18 to 26 with 25 points and 4 missing data. This sub-sequence is used to 
compute a circular projective reconstruction. The estimated relative rotation angles 
before and after circular projective reconstruction are shown in figure 1 (a), which 
shows that enforcing the circular constraint improves the estimation results 
significantly. Usually, the general projective reconstruction gives smaller 2D 
reprojection error than the circular projective reconstruction due to the constrained 
motion of camera in the later situation. In our case, the 2D reprojection error of general 
projective reconstruction is 0.32 pixels whereas that of circular projective 
reconstruction is 0.4 pixels. However, the circular constraint is important to the 
reconstruction and should always be enforced. Other sub-sequences are then formed 
with at least 15 points seen in each sub-sequence and two views overlapping in 
successive sub-sequences. Totally 9 sub-sequences are produced. The circular 
projective reconstruction is then extended to the complete sequence followed by a 
bundle adjustment. Figure 1 (b) shows the results of estimated relative angles of 
rotation of the complete sequence before and after bundle adjustment. The RMS errors 
of the two results before and after bundle adjustment are 0.11˚ and 0.07˚, demonstrating 
the accuracy of the algorithm. The reconstructed cameras and dinosaur model are given 
in figure 2. 
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(a)     (b) 

Figure 1: Estimated relative rotation angles (a) of the sub-sequence containing views 18 
to 26 before and after circular projective reconstruction (CPR), and (b) of the complete 
sequence before and after bundle adjustment (BA). 
 

     
(a)     (b) 

Figure 2: Circular projective reconstruction of the dinosaur sequence. (a) Recovered 
camera positions and 3D reconstruction of the dinosaur. (b) Another view of the 
dinosaur 3D reconstruction. 
 

6  Conclusions 
 
This paper introduces a novel reconstruction algorithm for structure from motion under 
circular motion. The annoying missing data problem is avoided using the hierarchical 
reconstruction approach. The circular constraint is inherently enforced in the 
reconstruction process as well as in the bundle adjustment. This enforcement 
significantly improves the accuracy, robustness, and efficiency of the estimation, as is 
verified by the real experiment. In particular, we have shown that computation expenses 
can be greatly reduced for circular motion as the complete reconstruction can be 
obtained by extending a reconstruction of only one sub-sequence. 
 

7  Acknowledgements 
 
The work described in this paper is partially supported by a grant from the Research 
Grant Council of the Hong Kong Special Administrative Region, China (Project No. 
HKU 7058/02E) and partially supported by CRCG of the University of Hong Kong. 
 



References 
 
[1] W. K. Tang and Y. S. Hung, A Factorization-based method for Projective 

Reconstruction with minimization of 2-D reprojection errors, DAGM, pp.387-394, 
2002. 

 
[2] A. W. Fitzgibbon and A. Zisserman, Automatic Camera Recovery for Closed or 

Open Image Sequences, ECCV, pp. 311-326, 1998. 
 
[3] A. W. Fitzgibbon, G. Cross, and A. Zisserman, Automatic 3D Model Construction 

for Turn-Table Sequences, SMILE’98, LNCS 1506, pp. 155-170, 1998. 
 
[4] G. Jiang, H. T. Tsui, L. Quan, and S. Q. Liu, Recovering the Geometry of Single 

Axis Motions by Conic Fitting, CVPR, Vol. 1, pp. I-293 – I-298, 2001. 
 
[5] E. Boyer, Object Models From Contour Sequences, ECCV pp. 109-118, 1996. 
 
[6] S. Sllivan and J. Ponce, Automatic Model Construction and Pose Estimation From 

Photographs Using Triangular Splines, PAMI, Vol. 20, No. 10, pp. 1091-1097, 
1998. 

 
[7] P. R. S. Mendonca, K. Y. K. Wong, and R. Cipolla, Epipolar Geometry from 

Profiles under Circular Motion, PAMI, Vol. 23, No. 6, pp. 604-616, 2001. 
 
[8] H. Zhong and Y. S. Hung, Conjugate Epipole-based Self-Calibration of Camera 

under Circular Motion, M2VIP, pp. 239-246, 2003. 
 
[9] W. Niem and R. Buschmann, Automatic Modelling of 3D Natural Objects from 

Multiple Views, Yakup Paker and Sylvia Wilbur: Image Processing for Broadcast 
and Video Production, Workshops in computing series, Springer, Hamburg, 1994. 

 
[10] P. R. S. Mendonca and R. Cipolla, Estimation of Epipolar Geometry from 

Apparent Contours: Affine and Circular Motion Cases, CVPR, pp. 9-14, 1999. 
 
[11] Y. Liu, H. T. Tsui, and C. K. Wu, Resolving Ambiguities of Self-calibration in 

Turntable Motion, Proceeding of the 15th Int. Conf. on Pattern Recognition, IEEE, 
pp. 865-868, 2000. 

 
[12] K. Y. K. Wong, P. R. S. Mendonca, and R. Cipolla, Structure and Motion 

Estimation from Apparent Contours under Circular Motion, Image and Vision 
Computing 20 (2000), pp. 441-448, 2000. 

 
[13] G. Jiang, H. T. Tsui, L. Quan, and A. Zisserman, Single Axis Geometry by Fitting 

Conics, ECCV 2002, LNCS 2350, pp. 537-550, 2002. 
 
[14] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 

Cambridge University Press, 2002. 


