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Abstract

A single grey-scale camera based object classification system for vehicle
airbag deployment control in wide and frequent illumination variations is
introduced. Image sequences are acquired using an active illumination sys-
tems that is used to minimise the effects of the widely varying levels of am-
bient illumination, combined with a means of shadow suppression. Two-
dimensional information of the object is extracted by employing the active
contour model, based ona priori knowledge of the passenger behavior. A
triplet of images, of which each image is illuminated from a different di-
rection, are sequentially used by the photometric stereo method to recover
the three-dimensional shape of the object. Utilizing both the two and three-
dimensional properties of the object, a 29-dimensional feature vector is de-
fined for the training of a neural network designed to solve a three-class prob-
lem, with the classes beingforward-facing child seat, rear-facing child seat,
andadult. The system is tested on a database of over 84,000 frames collected
from a wide range of objects in various illumination conditions. A classifica-
tion accuracy of 98.9% was achieved within the decision-time limit of three
seconds.

1 Introduction

According to the Federal Motor Vehicle Safety Standard (FMVSS) 208 set out by U.S Na-
tional Highway Transportation and Safety Administration (NHSTA), nearly 100 percent
of all automobiles sold in US must have the ability to automatically control the deploy-
ing power of airbags based on crash severity, occupant type and size, as well as seat belt
usage, starting with the 2006 model year [8]. As manufacturers began to develop various
occupant detection systems, the vision techniques have attracted much attention due to
their superior adaptability to various vehicle cabin environments as compared to the other
mechatronic methods. In recent years, a number of optical approaches have been studied
to resolve the airbag suppression decision problem [5, 7]. These studies can be classified
into two categories depending on the number of cameras used in the system. In the earlier
versions of occupant detection systems, single camera approaches were in demand due to
the high cost of imaging sensors. However, such monocular systems did not provide suffi-
cient 3D information necessary for functions such as theout-of-position detection, which
is a supplementary task guaranteeing low risk deployment according to the position/pose
of the passenger. As a consequence, the majority of occupant detection systems employ
stereo vision techniques using two cameras.
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Figure 1: System overview: (a) the structure of the proposed system in conjunction with
the out-of-position detection system, and (b) the state transition diagram of the overall
system. The transition ’Event’ occurs when any dramatic change happens in the field of
view, such as any abrupt change of classes.

Faced with the increasing demand for various vision-based in-vehicle applications, the
growing number of cameras employed has come under serious scrutiny. For this reason,
this research focused on developing a single camera system able to generate additional
3D information by using minimal supplementary active illuminations. The aim of this
paper is to propose a novel framework mainly for, though not restricted to, the occupant
detection system, as well as to demonstrate the possibility of alternative systems with
comparable performance to binocular based vision systems. The proposed system is de-
signed to classify an object in a vehicle for facilitating the airbag control module. Fig.1(a)
shows a basic framework of the system. It is assumed that the classification results may
be shared with the out-of-position (OOP) detection system as shown in Fig.1(b) describ-
ing the state transition between two systems. The OOP detection is activated only if the
object is classified as anadult, which is the only class continuously observed after the
classification.

2 Image acquisition and pre-processing

2.1 Illumination stabilisation: DoubleFlash

Mainstream CCD based, and most of the emerging CMOS based image sensors, do not
provide sufficient optical dynamic range for monitoring the interior of a vehicle which are
subject to extreme variations of illumination both spatially and temporally [5]. In order
to capture images without losing image details in such an environment, it is essential
to employ an imager with a high dynamic range and/or a novel approach to decrease
the dynamic range without varying illumination offset. The DoubleFlash technique was
employed in the proposed system, which combines the advantages of offset reduction
and dynamic range compression by illuminating two input images with different radiant
intensities, originally introduced in [6].



IIoffoff IIoffoff IIoffoffIIaa IIaaIIbb IIbbIIcc IIcc

II22 II33

Input sequence

Output sequence II11

(a)

• • • • • •

Output sequence II11 II55II22 II66II33 II77II44 II88 II99

IIoffoff IIoffoff IIoffoffIIaa IIaaIIbb IIbbIIcc IIccInput sequence

(b)

Figure 2: Real-time ShadowFlash: (a) without the slidingN-tuple strategy (b) with the
slidingN-tuple strategy.

2.2 Shadow removal: ShadowFlash

Nearly all vehicle interior monitoring applications introduce supplementary light sources
(usually in the near-infrared region) in order to attain an appropriate illumination offset.
Therefore, strong cast shadows are unavoidable in the field of view. Shadows often gener-
ate erroneous segmentations causing false detection of imaginary objects, which hinders
the overall performance of a system. The ShadowFlash introduced in [9] is a method to
eliminate shadows by simulating a virtual light source of infinite size. The algorithm uses
multiple images, where each image has been flashed from a different direction. The num-
ber of input imagesNin necessary to create one shadow-free image is equal to the number
of employed light sourcesnlight plus an additional image for calculating the ambient light
suppression.

Nin = nlight +1 (1)

The experiments are performed withthree light sources(the minimum number for a prac-
tical photometric stereo method), making the number of inputs four, including ambient
lighting. If the ambient illumination imageIo f f set is negligible, the number of input im-
ages can be reduced tonlight by discarding the DoubleFlash. However, the robustness to
deal with illumination change is lost.

2.3 Temporal domain processing: sliding n-tuple strategy

The ShadowFlash idea can be extended to the temporal domain by synchronising the illu-
mination sources with the trigger signal of a imager so that the imager produces a video
sequence of (· · · , Ib, Io f f set, Ia, Ib, Io f f set, Ia, · · ·) whereIx are the images illuminated by the
light sourcex while Io f f set represents an image having only ambient illumination. How-
ever, the direct application of the ShadowFlash method to the temporal domain raises two
problems. First, the frame rate of the output sequence will be reduced to1

Nin
accompanied

with a nlight -frame delay in the beginning of the acquisition, becauseNin images are re-
quired to obtain one shadowless image as explained in Eqn.1. Secondly, if any object in
the scene moves during aNin-tuple, some artifacts will occur around the boundary of the
object.

In order to avoid the frame rate reduction, asliding N-tuple strategyis proposed. A
memory window with the width ofNin frames is created, whereby the window is moving
along the time axis. In the window,Nin differently illuminated successive images are
constantly refreshed. These images continuously form a set of inputs to create a shadow-
free output image. Fig.2(a) shows that the frame rate of the result sequence is divided
by four while the output frames are consecutively calculated by employing the sliding
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Figure 3: ShadowFlash and segmentation results: (a)-(d) a sequence of images used for
this test:Io f f set, Ia, Ib andIc, respectively, (e) the ShadowFlash image and (f) segmentation
result applied to the ShadowFlash image. (red: bounding box, green: convex hull, yellow:
approximate boundary and white: snake result)

N-tuple strategy in Fig.2(b). Fast moving objects may distort the result of the slidingN-
tuple strategy. The amount of distortion depends on the frame rate of the imager. When
the imager produces frames with sufficient speed, the artifacts caused by moving objects
should be negligible. In case of a slow frame rate compared to the velocity of moving
objects within the scene, a supplementary algorithm should be implemented to detect and
correct the difference between frames. However, if such a correction filter is added to the
ShadowFlash approach, the speed advantage over the other algorithms will be reduced or
lost. An example of the extended ShadowFlash method is shown in Fig.3(e).

3 Extracting information from 2D and 3D processing

3.1 Object boundary extraction: active contour models

Like many other machine vision applications, boundary extraction is of great importance
in the proposed system to provide object outline shape information. Once the segmen-
tation process starts, the textural similarity of each frame against to thereference back-
groundis analysed by comparing their local statistics by window operation (5×5). Since
the local and global illumination changes are stabilised by the DoubleFlash, and all the
shadows are removed by ShadowFlash, the statistics comparison followed by a simple
adaptive thresholdingis sufficient to provide anapproximate boundaryof the observed
object.

An active contour model[3] is employed to refine this approximate boundary. In order
to provide aninitial contour for the following snake evolution, aconvex hullis generated
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Figure 4: The surface normals and their recovered 3D surfaces projected along thez-axis:
(a)-(c) needle maps superimposed on their original images and (d)-(f) surface reconstruc-
tion results with the spread axes.

around the approximate boundary. In this case, a sequence of the approximate boundary
points exists normally between two consecutive convex hull vertices, while each pair of
vertices form a line segment. For each sequence, we can defineconvexity defectas the
maximum vertical distance between the sequence and corresponding line segment. For
example, the convexity defect of a sequence adjacent/overlapped to the corresponding line
segment is zero. Finally the convexity defect is used for weighting the energy function of
each snake cell which belongs to the line segment providing the weight, so that the cell
has higher mobility when it has a greater distance to the approximate boundary than other
cells. A segmentation result is shown in Fig.3(f).

3.2 Three dimensional vision: the photometric stereo method

Since the goal was to provide three dimensional information without using a binocular
imager, there are three main possibilities to consider for surface recovery.Structured
lighting is a so-called active stereo vision method which calculates the three-dimensional
shape of the object based on the deformation of the light patterns projected on the tar-
get’s surface. The calculations are simple and fast so that the shape of the scene could
easily be extracted, provided that the feature points of the projected pattern are accurately
detected. However, in reality, it is difficult to implement an accurate pattern using an in-
frared light source due to the constant vibration in the vehicle environment. Furthermore,
such patterns may not provide enough resolution for object classification.

Recently, atime-of-flight (TOF) imager, which consists of an array of single point
distance measurement units measuring the runtime or phases of the emitted light from a
supplementary light source, is of great interest in the industry. The TOF imager has a
great advantage in that it directly measures the absolute depth and determines a complete



distance map of the scene without any delay. Nevertheless, since the measurement range
is limited by the maximum radiant power, the possibility of violating the eye safety limits
still remains to be solved.

Thephotometric stereo method(PSM) is an extended version of theshape from shad-
ing (SFS) using multiple light sources, which constructs the relative depth of the object
with full resolutionby using its reflection properties. Unlike the SFS, which suffers from
the lack of sufficient information in an arbitrary irradiance image to reconstruct the ob-
ject surface unambiguously, it was successfully proven that the PSM performs the surface
recovery with greater ease, especially when there are more than three light sources.

Since the multiple illuminations are already employed for the ShadowFlash method, it
is possible to apply the PSM, for there was no need to provide supplementary hardware for
such an implementation. The problem of using the PSM method for our application was
any abrupt movements of objects in-between two successive frames which may cause
significant distortion of the recovered surface. However, after extensive testing, it was
concluded that the level of distortion caused by motion is acceptable for the application
considered here, which do not need to make a decision frame-wise, and especially for
systems which do not require high spatial resolution of the scene. The frame rate of the
imager is also a primary factor which influences the reconstruction performance.

The overall task of the PSM involves two major procedures: estimation of surface
normals, and integration of the object surface from the normal vectors. The estimation
of the surface normal vector could be performedalbedo-independentlyby solving irra-
diance equations supported bya priori information about the direction and power of the
illumination sources [4]. The Frankot-Chellappa algorithm [1], based on minimising in-
tegrability conditions in the frequency domain, is employed with a minor modification to
improve its robustness for small artifacts caused by motion regardless of its disadvantage
in computation time. Some typical surface recovery examples and needle maps of their
surface normals are shown in Fig.4.

4 Classification

4.1 Feature selection

Because there is no need for detecting an empty seat for a safety reason, the number of
occupant types to be classified is limited to three:adult, forward-facing child seat(FFCS)
andrear-facing child seat(RFCS). Although seekingdistinguishing featuresinvariant to
any irrelevant transformations of input is an essential task to make the job of the classifier
trivial, it was still difficult to find apparent features which clearly discriminate all three
classes. Therefore, each feature is designed to specify at least one class from the other two
(e.g. use of the occupant size in order to distinguish an adult from the child seat classes).
The proposed 29 features are defined as follows:

Extended Gaussian image: 4 dimensionsThe EGI is a histogram of the surface normals com-
puted over a discretised Gaussian sphere. While the surface normals are easily derived dur-
ing the calculation of the PSM (see Fig.4), it is expected that the rear-facing child seat should
have a different aspect of its surface direction from the ones from the other two classes. The
histogram is divided into bins of 90 degree each, and the number of the normal vectors
belongs to each bin are calculated.

Surface depth: 4 dimensionsThe profile of the relative depth projected from the top of an ob-
ject is also used as a feature. Since the camera coordinate system differs from the world
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Figure 5: Feature extraction:(a) The camera calibration provides the rotational matrixR
with respect to the world coordinate origin. In principle, all the three-dimensional features
are rotationally transformed in order to make them correctly viewed from the top. (b) The
extremaE1, E2 andE3 are defined as a most upper, most front (left) and most rear (right)
point on the recovered surface, respectively.

coordinate system, a rotational transformation is performed with a given rotation matrix
R representing three partial transformation (pan, tilt androll angles) in order to provide a
depth profile projected along thez-axis of the world coordinate system. A brief illustration
of changing the view point is shown in Fig.5(a).

Spread axes information: 9 dimensionsWith the successful recovery of the object surface, three
extrema (E1, E2 andE3 as defined in Fig.5(b)) on the surface are used for the definitions of
a few useful features. Thespread axes[5] are the lines between the center of gravity and
the extrema. Accordingly, thespread angles(αZ1, αX2 andαX3) are defined as the angles
between the spread axes and the coordinate system; while therelative spread angles(β12, β13
andβ23) are the angles between the spread axes themselves. These two angle characteristics
as well as the lengths of the spread axes are used as key features for the classifier. A few
examples are shown in Fig.4(d)-(f).

Relative position of the upper extremum: 1 dimensionThe relative position of the upper extremum
E1 along thex-axis could be a good clue to specify the rear-facing child seat class against
the other two classes. As shown in Fig.5(b), the relative positionPE1 is simply defined as

PE1 = WE1
W whereW andWE1 are the width of the object and the distance along the x-axis

between theE1 andE3, respectively.

Volumetric ratio and compactness: 2 dimensionsSince it is not possible to recognise what hap-
pens behind the object, it is difficult to define thevolumeof the object. Even if the assumption
is made that the object has a flat back side, the volume of the target may still be extremely
sensitive to the segmentation result. Consequently, the ratio of the three-dimensional surface
area to the two-dimensional boundary area is defined as avolumetric ratio, which should
increase as the volume of the object expands. Assuming a flat back side, the proportion, or
compactness, of the object volume to a hexahedron enclosing the object could also provide
robust estimation of its volume.

Other 2D geometric information: 9 dimensions Three low-order components of bothnormalised
central momentsandHu momentsare selected as features, along with thewidth, heightand
areaof the object boundary.
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Figure 6: Classifier design: (a) the Jordan network after the learning process, (b) the
proposed classifier framework with two tapped delay lines and (c) the classification error
space with respect to the length of delay lines.

4.2 Classifier design

Since a change of the occupant type is not likely during driving, the classification is,
in most cases, enough to be performed once in the beginning of operation unless any
dramatic change in the field of view occurs (Fig.1(b)). Hence, it is assumed that the
proposed system must reach a decision withinthree seconds, which implies processing of
90 frames at the 30 Hz frame rate before making a final decision.

Considering that the proposed features did not reflect any dynamic properties of the
passenger, it was necessary to construct a classifier model which is able to handle and
classify temporal series. Therefore, trained in a supervised way, apartially recurrent
networkproposed by Jordan [2] is employed with the support of twotapped delay lines,
which are delay memories providing access to its contents at arbitrary intermediate delay
length values. Each tapped delay line improves the accuracy of overall classification per-
formance by filtering the noisy components in the stream of either feature vector (input)
or classification result (output). The maximum delay length of the proposed system is
limited to the 90 frames, allowing the system to monitor three seconds of the passenger
history. The proposed Jordan network is shown in Fig.6(a) while Fig.6(b) presents the
overall structure of the classifier module.



Class type Forward facing child seat Rear facing child seat Adult
Error rate(%) 14.2 15.4 0.725
Favorite error RFCS(99.5%) FFCS(90.0%) RFCS(68.3%)

Table 1: Error statisticswithout the tapped delay lines. Overall error rate: 6.66%

Class type Forward facing child seat Rear facing child seat Adult
Error rate(%) 10.1 13.7 0
Favorite error RFCS(100.0%) FFCS(91.7%) N/A

Table 2: Error statisticswith the tapped delay lines. Overall error rate: 1.14%

5 Experimental results

The experiment was conducted with 578 image sequences collected from 29 different
child seats and 25 persons with a resolution of 320×240 in 12-bit gray scale at 30 Hz in
a laboratory environment which simulated actual vehicle interiors. The sequences were
illuminated by threenear-infraredLEDs which satisfied the eye-safety. The lens distor-
tions were eliminated using the pre-calibrated camera parameters. Additional objects such
as blankets and different ambient illumination conditions were used to provide diversity.
By implementing the DoubleFlash and ShadowFlash techniques, the system is indepen-
dent from any ambient illumination conditions, provided that the conditions satisfies the
minimum requirements of the techniques discussed in [6, 9, 5]. (e.g. the irradiance of the
scene must not exceed the dynamic range of the imager.)

Finally, the sequences were evenly split into two groups creating atraining andtesting
set, while the length of the sequences varied from 100 to 500 frames depending on the
occupant’s behavior, and the target output values were manually surveyed. The proposed
network was trained by the resilient backpropagation (Rprop) algorithm with the training
set, while the regularlogistic activationfunction was set to all the neurons and initial
values at its synapses were randomly chosen. The learning was halted when the network
reached the error minima (the mean squared output error of 0.0793 after 120 iterations).

Since the neural network only makes a single frame decision, the classification per-
formance was evaluated with a test set according to the lengths of two tapped delay lines.
Fig.6(c) shows that the system is apparently more sensitive to the length of the output
delay buffer due to the recurrent network’s adaptability to sequential behavior. However,
as the sizes of both delay lines increased, the difference of the sensitivity became negli-
gible. Tbl.1 shows the error analysis according to the class types without the support of
the tapped delay lines. Most errors occur between the FFCS and RFCS classes due to
their similar characteristics of the two-dimensional geometry, especially when the scene
is altered by additional objects (e.g. a baby holding a teddy bear in the RFCS covered
by a blanket). Low error rate in the adult class was achieved even with test sequences in-
volving large amounts of motion. These are encouraging results, as the misclassification
between an adult and child seat generally poses greater danger than that of the misclassifi-
cation between two child seats. After applying the tapped delay lines, the error rates of all
classes were dramatically decreased as shown in Tbl.2. Although the original error rate of
the ordinary Jordan network reaches 6.66%, a classification rate of 98.9% was achieved
after setting the lengths of the input and output delay lines to 31 and 59 respectively.



6 Conclusions

A novel frame work of classification system was introduced based on a 3D surface re-
covery technique using a single camera with multiple illumination sources. The necessity
of the wide dynamic range under varying illumination circumstances was successfully
overcome by the implementation of the DoubleFlash method. Furthermore, an extended
ShadowFlash technique supported by a delay buffer was proposed to provide shadowless
image sequences to a real-time vision system. The active contour model, whose energy
functions were weighted based on its convexity defect property, provided boundary infor-
mation of the object of interest, whereas the 3D surface was recovered by the photometric
stereo method with three differently flashed images forwarded from the ShadowFlash
module. Using the 29-dimensional feature vector reflecting both 2D and 3D properties
of the observed object, a Jordan network with the support of two tapped delay lines was
trained with supervision. Finally the system resulted in the classification rate of 98.9%
within the assumed classification time-limit.
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