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Abstract

This paper introduces a method of image segmentation that partitions an im-
age into regions exhibiting self-similarity. The new method is well suited
to the description and segmentation of images containing textures, such as
fingerprints and medical images. An affine texture description which models
an image as a collection of self-similar image blocks is developed and it is
shown how textural regions can be approximated by a single prototype block
together with a set of affine transformation coefficients. The transformations
are estimated by Gaussian mixture modelling of the prototype block spec-
trum and a least-squares estimation to fit the model to the target block. An
appropriate set of prototype blocks is determined for a given an image by
clustering in a feature subspace of discrete samples from an affine symmetry
group. We consider how the texture synthesis outlined in the first stage can
be combined with the prototype clustering in the second, to build a novel im-
age segmentation method. Experimental results demonstrate the potential of
the method on widely varying images.

1 Introduction

Images exhibit self-similarity not only because there is a great deal of redundancy in im-
age regions that are flat or change in colour smoothly, but also in the obvious rotational
symmetry of small sections of image contours: edges and lines. As well as rotational sym-
metry, there are changes of scale such as ‘thin’-edges and ‘fat’-edges, small structures and
larger versions of the same. Natural scenes, biological images, or images containing rep-
etitions, often have a tiling of some image ‘patch’ or texton. Notable image models that
have exploited image self-similarity for image analysis are the fractal image coding meth-
ods of Jacquin and others [1], and warping methods first reported by Volet [2] for texture.
Syntactical or structural approaches attempt to capture the repetition and self-similarity of
a texture by picking a texton and defining rules for its placement to synthesise the entire
texture. For some types of texture, a structural model alone is unsuitable, so statistical
texture models, such as MRFs, have been used to parameterise the randomness of the tex-
ture. With combined structural and random models [3] a stochastic element is ‘added’ to a
purely deterministic local texton model to account for the effects of texture variation due
to surface properties, lighting or noise in the imaging process. Natural textures, however,
differ fundamentally from man-made textures by a degree of randomness, syntactical er-
rors or faults, that is inherent at the structural level. This is why, for example, a simple
tiling of a texture patch from a natural texture does not have a natural appearance [4].
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In this work using Gaussian Mixture Modelling (GMM), we build on the work of
Hsu, Calway and Wilson [5, 6], whose two-component affine texture model combined a
structural texton plus stochastic residual that enabled the synthesis of a range of textures
from periodic to random. Moreover, this affine placement model itself can accurately
model small structural variations which seem important in natural texture.

Two questions are tackled:

1. Given two self-similar image patches, is it possible to accurately and efficiently
estimate the symmetry transformation (rotation, scaling and shear)?

2. Given an image containing self-similarities, can a small set of prototype image
patches which can be used to model the entire image, to some level of distortion,
be determined?

We use a Gaussian mixture model to estimate the affine transformation (1), and apply
feature clustering to achieve (2). We thus obtain a concise way to describe the image
and perform image segmentation where image features are small representative patches
from the image, the feature clustering is invariant to local affine transformations of these
patches, and the accuracy of the segmentation can be measured by image reconstruction.

2 A Model for Affine Self-Similarity

Image regions are modelled as sets of repeating texture patches, assuming that each region
can be adequately represented by affine coordinate transformations of some prototypical
patch (the source texton) and an intensity scaling. Denoting the coordinates of a target
patch,f;, byy = (p, q)",0< p,q, < N, the target patch estimate is
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whereT;; is a 2D affine transformation of the coordinates of some source faarto;;
is a scaflng for image intensity changes. The transformation consists of a Iine&kipart,
and a translatiort;;. Itis convenient to use overlapping square image patches (blocks) as
textons of sizé3, such ad6x 16, 32x 32etc. By using a squared cosine window function
centred on the blocky(y) = cog[rp/B| co’[r/B] and having the blocks overlap by
50%, it is possible to sum the transformed patchéy) f; (y), without blocking artifacts
being introduced.

To estimate the affine transformatiofjs, the Fourier transform of the source patch,
Fi(u), is used to separate the transformation,

Fi(u) = ‘detA TdetA] Pt IR (AT ) ©

such that the linear par;, affects only the amplitude spectrum and the the translation

is exhibited as a phase gradient. To estimate the affine transformation a three stage method
is applied: (1) the amplitude spectrum of the source block is modelled by a Gaussian
mixture; (2) a search is made for the linear transformation of this mixture model to fit
the spectrum of the target block; (3) the best translation between the linear transformed
source block and the target block is recovered by cross-correlation. These steps are shown
in the flow chart of figure 1.
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Figure 1: Affine transformation estimation stages Source (domain) image blockiis

and a target image block is The amplitude spectrum of the DFT of the source block

is modelled by a low-order Gaussian mixture model centred on DC. A gradient descent
search is made to determine the linear part of the transformdtjpn/,vith the the target
block amplitude spectrum. Then, the DFT spectrunf;ofy;u) andF;(u) are correlated

to estimate the translatidy).

2.1 A Gaussian Mixture Model of Spectral Amplitude

The amplitude spectrunfi; (u)|, is modelled as a two-dimension#, component Gaus-
sian mixture

G(U) = 3 amexp(~uTCrtu/2), @

having centroids fixed on the origin of the spectrum and coordinates(r,s)”. The
Gaussian parameter@m,Cn} are then estimated by minimising the residual error,
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using a standard non-linear optimisation method, Levenberg-Marquardt (LM) [7]. LM is
a conjugate gradient descent method which requires the gradient with respect to the fitting



parameters to be known at each data point. It is not difficult to show that
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wherec;s are the components of the inverse of the covariance matrix,
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In the experiments presented below, we have found that a mixture with 2 components is
sufficient to model the general shape and amplitude of oriented and periodic patches. The
purpose of this modelling is not to accurately fit the amplitude spectrum, but to capture

its principal features such that a linear transformation of the modelnauelyfit the
amplitude spectrum of a target image block.

2.2 Linear Transformation Estimation

The second step of the affine transformation estimation uses the mixture model of the
source block spectrum and searches for a linear transformation that minimises the squared
residuals,y (G; (A (u)) — |Fj(u)|)2. This search can be again performed by the LM
method. This time the gradients Bf(u) = G;(A(u)) w.r.t. the parameters of the linear

transformation matrix,
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are needed:
ddH;ErU) = —H(u)(1+r)(cr,Crs)Au/2, ©)
ddHafu) = —HU)+s)(er,as)Au/2
ddHi—a(sl:) = —Hi(u)(1+r1)(Csr, Css)AU/2,
d:iai:) = —H;(u)(1+5s)(Csr,Css)AU/2.

Note LM is prone to become trapped in local minima and more reliable performance is
achieved by initialising the searches at several different start pdimsnitially restricted

to be Cartesian for these searches, sodhat ass= ycoq @) anda;s = —agr = ysin(@).

When this converges, typically in under 10 iterations, a shearing of the model is permitted
by letting the off-diagonal elements have different scaling valags= y; sin(¢),asr =

Yo Sin(@).

2.3 Translation Estimation

The final step is estimating the translatign, which is exhibited in the phase spectrum
of the block DFT. An estimated transformed bIomey), is synthesised by the applying



the linear transformatiorny = Aij X. The translationt
of the cross-correlation i.e.

ij is then taken as the peak location

t;= argrrza*fj *f;].

3 Self-Similarity Clustering

Image patches are related through the operation of the affine gmmpfj = f;; the
process of image modelling described above produces a set of samples from this group
Ajj that minimise the residualgAy;. tj; ) f; — fj)z. If the image patcheis j do not belong

to the same image region, then the residual will be Iarge/apdvill fail to model a
self-similarity. In these cases, to minimise the reconstruction error, a different source
image patchf; can be used, which is representative of the region to quctielongs. To
discover a set of prototypical textons, ideally one for each image region that appropriately
‘span’ the image, a clustering approach is used.

In the supervised case, we cluster not just to the representative (given) cluster cen-
troids, but to arextended familpf cluster centres which are created by taking a finite
sub-group from the grou(:Aij ,t”)fl, wherel is a given prototypical block. As with the
GMM model estimation described above, by extroplating the sub-group of rotations and
scaling from the amplitude spectrum prototype block, makes the family translation invari-
ant. In our experiements we have restricted these prototype transformations to a sub-group
of rotations and scalings df and ignored shears. We have used 8 rotations and 8 scalings
to create a cluster familfy, ,0 < k < 64. Having applied each transformatidnthese pro-
totype blocks giveB? dimensional vectorst,, (x) — f,.. The remaining image blocks are
then clustered using a nearest neighbour criterion. We can imagine that the data feature
vectors cluster closest points on manifolds represented byrbtation/scaling family of
each prototype. Thus each data block is labelled as the closest family member which have
already taken into account the affine group invariancedikolpf has suggested this same
idea but for extending SVM vectors [8].

In the unsupervised case, each image data block has to have a set of likely affine-
variants created before clustering can take place. This is clearly computationally arduous
and requires a more sophisticated clustering method. Techniques for affine invariant clus-
tering are discussed in detail by Fitzgibbon and Zisserman [9] who describe a distance
metric incorporating a prior on the transformation parameters. These methods may be
more suited to the unsupervised problem.

4 Experimental Results

Figure 2 shows results of self-similarity image modelling and reconstruction on a reptile
skin image taken from the Brodatz database (top row), a fingerprint (second row) and two
wild-life images with zebras and a jaguar (third and fourth rows). Columns (b)-(d) show
synthesis results using a single domain block (highlighted in white on the original (a)) at
overlapping block sizeB = 16,32 and 64 pixels. The mixture modelling analysis was
performed on whitened (Laplacian pyramid) version of the original (see [5] for details)
and coarse version of the low-pass information was added back at the end. The number
of parameters per pixel for these images is related to the block Biaad the image

sizeN and can be estimated bi(B) = m}—%z + (B/N)2. This assumes that each affine



transformation require6 parameters, witl for the intensity scalinga, and the low-

pass information encoded at twice the spatial resolution as the number of blocks in each
dimension i.e 4 extra parameters per block: the total beg 4+ 1 = 11 per block. In
addition, each prototype itself h&8 pixels per image:

Params/pixel B=8 | B=16 | B=32 | B=64
P(B) | 0.688| 0.173 | 0.047 | 0.026

The results demonstrate that the chosen texton is able to describe and reconstruct well
the original data including the imperfections in the repetitive cellular pattern of the reptile
scales, the cuts and minutiae of the fingerprint and the multi-directional and bifurcating
stripes of the zebra. Even the reconstructions at the largest texton size (the lowest ‘rate’,
atP(64)), exhibit the essential structural features of the image, yielding a ‘painted’ effect.

In the zebra reconstructions, the background has no obvious deterministic component
and is modelled largely by the amplitude scal'mg of (2). Where there is a structural
texture present such as in the jaguar image the prototype, taken from the back of the jaguar
containing the jaguar ‘print’, can be transformed adequately to become the leaves of the
forest behind the animal as well as the bark of the log.

SNR dB
Block size 16 32 64
Params/pixel 0.688 0.173 0.047
reptile | 13.3 - 8.6 - 5.3 -

finger | 154 15.1| 109 111|69 7.2
zebra | 144 14.8| 104 (8.1)| 69 7.6
jaguar | 16.0 16.3| 11.5 11.8| 7.8 85
girl | 148 18.4| 11.0 14.7| 88 11.1

Table 1:Estimates of reconstruction quality. Results based on 1 or more chosen proto-
types using affine invariant block based texture model. The SNR in first column for each
given block size (e.g16 x 16) is for single prototype reconstructions shown in figure 2.
The second column shows the errors (again for each block size), for multi-prototype re-
construction using the self-similarity clustering as illustrated in figure 3

Preliminary results of self-similarity clustering are presented in figure 3 and 4. Dif-
ferent blocks sizes were used to perform the clustering and subsequent reconstructions:
B = 16,64 results are shown in figure 3 for the fingerprint, zebra, jaguar and girl images.
In all cases, 3 texton blocks were used to seed the cluster families (shown on the original
images in figure 2, (a)). For the girl image, blocks in the background, on the edges of
the mirror and hair, and in the feathers were used. The clustering results on the finger-
print show a grouping of region blocks at orientations radially around the central whorl
feature. This is to be expected, as the cluster manifold is expanded to include 8 rotations
around the circle. Since textons with horizontal, vertical and diagonal ridges were cho-
sen, the labels roughly alternate between these three classes. In the case of the zebra, the
background is clearly labelled as one group and the vertical and horizontal stripe labels
together identify the two zebras. For the jaguar image, the animal is fairly well segmented
from the log (foreground) and the background leaves and trees. The final two columns
are the corresponding reconstruction results using all three texton blocks in both images.
The fingerprint results are marginally better than the single source block reconstructions



shown in figure 2. For the zebras, the background is better reconstructed by the texton
representing grass but the reconstructions show some amplitude modelling errors. This is
partly caused by the user specification of the the texton on the back of the right-hand zebra
falling on a white stripe: it does not contain any black to properly reconstruct the belly of
the right-hand zebra. However, for the zebras, the multi-block reconstructions are overall
better than those in figure 2. With the girl image, the visual results are hard to interpret
as it is difficult to manually select a representative compact set of prototypes. We believe
that an unsupervised texton selector, as outlined in the previous section, would alleviate
such problems and produce better reconstructions. Table 1 presents a quantitative com-
parison of the single and multiple prototype reconstructions (guided by the self-similarity
clustering). These results confirm the qualitative findings that the reconstructions based
on the clustering are marginally better.

Finally, we ran a self-similarity clustering experiment on a slice of CT data, figure 4.
What is notable about these results is that we were able to specify prototype blocks in
textural or piece-wise constant regions, such as the background and brain, asesgkas
regions such as the skull and internal bones. The clustering results show the method is
easily able to highlight the similar regions and could form the basis of a feature set for a
contextual classifer, like MRF model, or a global approach using deformable templates or
contours.

5 Conclusions

A self-similarity based image model has been presented which can be used to synthesise
textural image regions from representative image patches with good accuracy. We have
shown how a clustering approach can be used to discover, i.e. segment, these prototypical
image patches. The crux of the method is the underlying affine-invariant group model of
the patch that allows us to extend the given cluster centre to its immediate affine-group
family simplifying the clustering process. In the supervised case, the reconstruction re-
sults are indifferent and the choice of representative patch appears critical. We hope to use
a hierarchical, unsupervised clustering to improve the results further. Despite these prob-
lems, the affine-group mixture modelling and self-similarity reconstruction may provide

a basis of other applications such as content based image retrieval [10].
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Figure 2: Affine self-similarity image model reconstructions (a) using the texton
blocks marked in white at block siz&s= 16, 32,64 (b)-(d).
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Figure 3: Supervised self-similarity clustering results (a)-(b): results on fingerprint,
zebras, jaguar and girl images grouping image bloéks- (16,64) that are related by

an affine-group transformation. (c)-(d) Image reconstructions using 3 prototype texton
blocks selected by self-similarity clustering results using (a),(b).



Figure 4:Self-similarity clustering results on medical data An image slice froma CT
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