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Abstract 

This paper describes a novel learning-based approach for improving the performance of stereo 
computation. It is based on the observation that whether the image matching scores lead to true or 
erroneous depth values is dependent on the original stereo images and the underlying scene structure. 
This function is learned from training data and is integrated into a depth estimation algorithm using the 
MAP-MRF framework. Because the resultant likelihood function is dependent on the states of a large 
neighboring region around each pixel, we propose to solve the high-order MRF inference problem using 
the simulated annealing algorithm combined with a Metropolis-Hastings sampler. A segmentation-based 
approach is proposed to accelerate the computational speed and improve the performance. Preliminary 
experimental results show that the learning process captures common errors in SSD matching including 
the fattening effect, the aperture effect, and mismatches in occluded or low texture regions. It is also 
demonstrated that the proposed approach significantly improves the accuracy of the depth computation.   

1  Introduction 
The problem of recovering dense geometric information of a scene from images taken from multiple 
cameras has been extensively studied in the computer vision community for more than three decades. 
Steady progress has been made in improving the accuracy, the robustness, and the efficiency of stereo 
algorithms. The extraction of dense 3D structure from stereo images involves establishing 
correspondences between images and computing depth values using the triangulation method. Main 
challenges in stereo computation stem from the ambiguous or erroneous correspondences caused by the 
aperture effect, repetitive patterns, textureless regions, occlusion, and scene appearance changes. 
Methods have been proposed to solve these problems by improving the matching function or by 
applying sophisticated regularization schemes to suppress the matching errors. Several stereo algorithms 
in the first category include the adaptive windows matching [9], multi-view stereo [15], non-linear 
diffusion [16], and mutual information based matching [10]. Some popular regularization techniques 
include the cooperative-competitive algorithms [13],[21], scan line based Bayesian inference [2], coarse-
to-fine stereo [6], graph cut methods [3], and surface model fitting [8]. An excellent review of early 
stereo algorithms can be found in [5]. Recently, Shastein and Szeliski [17] reviewed and compared more 
than twenty existing stereo algorithms and made the evaluation method and implementations of several 
popular stereo algorithms available at the web site [22]. 

In this paper, we propose a new approach that learns the behaviour of the sum-of-squared-differences 
(SSD) matching and integrates this knowledge into a probabilistic framework to improve the depth 
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computation. By observing that the occurrence of matching errors is determined by the image texture, 
the 3D scene structure, and the size of matching window, the proposed method is designed to learn the 
probability of matching errors as a function of these variables. The learned probabilities are used to 
correct the false matching of SSD and help infer the true depth. 

To illustrate this idea, let us consider the fattening effect in the SSD-based matching (Figure 1). This 
refers to the phenomenon that foreground objects appear to be bigger in the depth maps. The explanation 
for this effect is that when a background pixel near a foreground object is matched using an image 
window, some foreground pixels are also included in the computation. Whether this type of error occurs 
is determined by how far a pixel is from a close-by foreground object, how large the matching window 
is, and how strong the background texture is. In other words, the behaviour of SSD matching at each 
pixel is a function of the stereo images texture, the true depth map and the matching window size. This 
observation is also true for other matching errors caused by low texture content, aperture effect, or 
occlusion (Figure 1). The proposed method learns this function from a training dataset and integrates it 
into an MAP-MRF framework. One of the new challenges in this approach is that the likelihood function 
of each site has to be evaluated based on the states of many other sites in a relative large neighbouring 
area. We solve this difficult inference problem in high-order MRF using the Metropolis-Hastings 
sampling algorithm. To improve the performance, a segmentation based method is further developed. 
Experimental results show that (1) the learned matching state distribution does capture various types of 
matching errors, and (2) integrating this distribution into the depth computation significantly improves 
the performance. It should be noted that although some the latest algorithms reported the best 
performance by using single pixel matching [22], in many real applications the image quality might not 
be as ideal as the test images in [22] due to image noise, illumination changes, and camera calibration 
errors. Window-based matching proved to be more robust under such conditions. 

Low texture  Aperture  Occlusion  Fattening
 Low texture  Aperture  Occlusion  Fattening  

Figure 1. Several common errors in window-based stereo matching. Left: the original left image. Right: 
the depth map computed using SSD matching with 9 9× windows.  

2 The approach 
2.1 Modelling the SSD matching errors 
The main questions in modelling matching errors are which types of errors need to be modelled, how to 
model them, and how to use the learned model to improve depth estimation. We notice that besides the 
fattening effect discussed in the previous section, another common problem in window-based matching 
is the matching ambiguities in low-texture regions, where the matching scores provide little information 
on the actual depth of the scene. In addition, aperture effect often occurs when the dominant orientation 
of the texture is horizontal. Under this situation, matching scores are similar along the epipolar lines and 
do not provide accurate depth information. Finally, occlusion causes matching errors that are difficult to 
correct due to the lack of information. In this paper, we propose to define a matching state variable il  for 



each pixel i to indicate whether the window-based matching leads to the true depth, the nearby 
foreground depth, or other wrong depth values, i.e. { , , }il true foreground outlier∈ .  

As discussed previously, il  is a function of the stereo images, the underlying 3D scene structure, and the 
size of SSD window. This function is denoted as ( | , , )iP l X I A , where I  is the reference image, X  is 
the true depth map, and A  is the matching window size. For simplicity, we will omit A  sometimes 
when we assume a fixed window size. This distribution is learned from a training dataset. Once this 
distribution is available, the raw SSD matching scores can be interpreted in more accurately for 
estimating depth. More specifically, suppose SSD matching score is ,i jC  for each pixel i at a disparity 

level j. Using the matching state il , the combined new likelihood becomes  
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where ,( | , )
ii i i i XP C X l true C= =  is the likelihood of observing matching scores iC  when the matching 

is correct. Its value can be approximated as , ii XC . ( , )fg i X  is a depth extrapolation function that returns 

the depth of the nearest foreground object. ( | ( , )iP C fg i X  is the likelihood of observing matching scores 

iC  if given the depth ( , )fg i X . It can be approximated as , ( , )i fg i XC . Finally, ( | , )i i iP C X l outlier α= =  

is a constant representing the likelihood of observing matching scores iC  for outlier, the probability in 
Eq. (1) can be used as a new matching measure or likelihood at pixel i.  
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Figure 2. Left: Matching measures in region B  do not support the depth map with the fattening effect. 
Middle: The image and depth attributes around a pixel. Right: The computation of the likelihood 
function depends on depth values in a neighbouring region. 

To illustrate why modelling the matching state il  improves the performance of depth estimation, Figure 
2 shows an example of the fattening effect. A background region A  and the neighbouring background 
regions B  are considered for the two candidate depth maps: the true depth map and the depth map with 
the fattening effect where A  has the foreground depth. It can be observed that both depth hypotheses 
have high scores in region A  using our likelihood function. However, for the wrong depth map where 
region A  has the foreground depth, it expects the fattening effect in B, which is not observed. 
Therefore, the foreground depth in region A must be the result of the fattening effect and the true depth 
has higher likelihood. 



2.2 Image attributes and the matching state distribution 
The conditional matching state distribution ( | , , )iP l X I A  is high dimensional because the matching 
scores and therefore the variable il  is affected by neighbouring image pixels and 3D scene structures. 
Direct learning of this high dimensional distribution is difficult. However, this distribution can be 
approximated by extracting a small set of image and structure attributes and replacing the original image 
I  and depth map X  with these attributes. The image and structure attributes should be complete in the 
sense that all the factors that influence the window-based matching are included. Meanwhile, the 
attribute set should also be compact enough so that learning is computationally feasible. We propose to 
use the following four attributes to condition il . They are the texture strength sT , the texture orientation 

oT , and the distance dF  and the orientation oF  of the displacement vector to the nearest foreground 
object (see Figure 2 for an illustration). Using these attributes, the conditional distribution ( | , , )iP l X I A  
can be approximated as  

, , , ,( | , , ) ( | , , , , )i i s i o i d i o iP l X I A P l T T F F A≈                                            (2) 

The conditional distribution , , , ,( | , , , , )i s i o i d i o iP l T T F F A  is represented as a histogram and is learned from 
a dataset with both stereo images and ground truth depth available. Staring from a SSD depth map 
computed using window size A , the learning procedure consists of the following steps: 

Step 1: Compute image attributes sT , oT  from the reference image I  and attributes dF , oF  
from the ground truth depth map X  
Step 2: For each pixel i, based on the ground truth, determine if depth resulted from the 
matching scores is the true depth, a nearby foreground depth, or an outlier. The result is 
assigned to il  
Step 3: For each pixel, quantize the four attributes and store il  to one of the three histograms 
representing 

, , , ,( | , , , , )i s i o i d i o iP l true T T F F A= , 

, , , ,( | , , , , )i s i o i d i o iP l foreground T T F F A= , 

, , , ,( | , , , , )i s i o i d i o iP l outlier T T F F A=  

Step 4: After the histograms are constructed based on all training images, normalize the 
corresponding bins in the three histograms to 1. 

In our implementation, the texture strength )(xTs  is quantized to 16 levels. The texture orientation oT  is 
quantized into 8 levels from 0 to 180 degrees. The quantization levels of dF  and oF  are dependent on 
the size and shape of the matching window. Because most matching methods use windows no larger than 
11 11×  pixels, dF  is within the range of 8 pixels, which is roughly half of the diagonal length of a 
11 11×  window. dF  is quantized to 8+1 levels  with one special level representing pixels without 
foreground objects around them. oF  is divided into 8 levels from 0 to 360 degrees. Therefore, the total 
number of bins in a histogram is 16 8 9 8× × × .  

2.3 MAP-MRF depth estimation using the matching state distribution 
The depth map X  is modelled as a Markov random field. The potential function between the 
neighbouring sites is designed to enforce the smoothness constraint. Line process is also integrated into 
the formulation using a robust function similar to the one used in [18]. More specifically, the prior 
function is defined as 
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where iN  is first-order neighbour system including the four adjacent pixels of location i . The potential 
function ( )c iV X  is defined using the robust function  
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Given the reference image I  and the matching scores C , the depth map X  is estimated as  
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where ( | , ) ( | , )i
i

P C X I P C X I=∏  is the likelihood function and ( | , )iP C X I  is defined in Eq. (1). 

Eq. 5 is similar to the MRF formulation previously proposed in [3] and [18]. However, it should be 
noticed that the likelihood function in Eq. (1) needs to be computed using neighbouring depth values. 
This is equivalent to estimating the graph depicted in the right of Figure 2. 

2.4 Estimating the depth 
In an MRF where the likelihood of each site is independent of other sites, the graph cut [3] and the belief 
propagation [18] algorithms proved to be effective for stereo computation. However, it is more difficult 
to optimize a high-order MRF such as the one shown in Figure 2 [12],[11]. We apply the Metropolis-
Hastings sampling algorithm [14],[7] to solve this problem. Using Metropolis-Hastings algorithm, a 
proposal move from current depth solution X  to a new solution 'X  is accepted with the probability  

1/
( ' | , ) ( ' )( ') min 1,
( | , ) ( ')

T
P X C I q X XP X X
P X C I q X X
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where ( | , )P X C I  and ( ' | , )P X C I  are the posterior probabilities of the two configurations and 
( ')q X X→  and ( ' )q X X→  are the proposal probabilities. In our algorithm, for pixel i , each proposal 

move either keeps its current depth iX , changes the depth to its initial depth 0
iX , or changes the depth 

to those of its neighbouring pixels ' ( )i iX N X∈ . In other words, 0' { , ( ), }i i i iX X N X X∈ . As discussed 
previously, by changing the depth of a single pixel, the likelihood values of neighbouring pixels are 
affected and need to be recomputed. This computation can be simplified because only the ratio between 
the likelihood values is needed in Eq. (6). To compute this ratio, the likelihood values of the nearby 
affected pixels are computed for configurations X  and 'X . More specifically, the posterior ratio is 
calculated as  
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where iA  defines the set of pixels whose likelihood values are affected by the depth change at  pixel i . 
The temperature T  in Eq. (6) controls the speed of the cooling process and decreases according to 

( ) ( 1)t tT Tκ −= , where κ  is a constant between 0.8 and 0.99. 

2.5 Segmentation-based optimization 
Though pixel-based sampling converges to the global optimal solution, it is not efficient in practice. To 
solve this problem, we further propose a segmentation-based Metropolis-Hastings algorithm. In our 
implementation, we adopt a scheme that uses the joint colour and depth segmentation. The colour 
segmentation is computed using the mean-shift algorithm [4]. The depth segmentation is obtained using 
the SSD matching scores convolved with a median filter. The intersection of the two segmentation maps 
is obtained to get an over-segmentation of the reference image. Figure 3 shows an example of the joint 
segmentation result.  

   

Regions with 
likelihood 
changed
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(a)                           (b)        (c)              (d) 

Figure 3 .(a): color segmentation result using mean-shift. (b): median filtered depth map. (c): joint color 
and depth segmentation result. (d): The computation of likelihood and prior change for one super-pixel 
in segmentation-based approach 

By introducing segmentation, we can regard each segment as a super-pixel. Then the depth estimation 
proceeds by iteratively hypothesizing the depth of each super-pixel. The possible proposal moves from 
current depth solution to a new solution can still be written as 0' { , ( ), }i i i iX X N X X∈ , but the subscript i 
denotes the segment index. Another difference is that )( iXN  varies depending on the neighbourhood 
configuration. Segmentation-based optimization also makes the computation of the prior and the 
likelihood different from the pixel-based approach. This can be illustrated in figure 3(d). By flipping the 
depth of a segment to a new value, we need to compute the likelihood change in a window larger than 
the bounding box of the current segment. For the prior term, since each segment takes a single depth 
value before and after flipping, we only need to compute the prior change for the pixels around the 
segment boundary.  

3 Implementation and experimental results 
3.1 Learning the matching state distribution 
The matching state distribution is learned based on stereo image pairs and the associated ground truth 
depth maps provided at [22].  To compute the image attributes, we used the canny edge detector to find 
the depth boundaries in the ground truth depth maps. Then the search of the nearest foreground object is 
carried out in a 9 9×  window centered at each pixel. If a depth boundary is detected in the window, dF  
and oF  are computed and quantized. The texture strength sT  and texture orientation oT  are computed 
using the gradient information in a small window around each pixel. Our experiments showed that even 



for this relatively small dataset, the learned matching state distribution reveals all the types of matching 
errors previously discussed. The results presented in this section are based on 5 5×  SSD matching. 

3.1.1 Fattening effect and occlusion 

The learned matching state distribution clearly shows the fattening effect. Figure 4(a) plots the 
conditional probabilities )|( di FtruelP =  and )|( di FforegroundlP =  with dF  as the variable. These 
probabilities are derived from the joint conditional probability ),,,|( osodi FTFFtruelP =  and 

),,,|( osodi FTFFforegroundlP = . The horizontal axis represents the distance of a pixel to its nearest 
foreground depth (in pixels). It is observed that the probability of a background pixel being mistakenly 
computed as the nearby foreground depth decreases as dF  increases. The probability of computing true 
depth has a reverse trend. Figure 4(c-d) compare the pair ( { , } | , )d oP l true foreground F F left= =  and the 
pair ( { , } | , )d oP l true foreground F F up= = . They show that the fattening effect occurs mainly along the 
vertical depth boundaries. In Figure 4(b), the probability ),|( leftFFtruelP od ==  is compared with 

),|( rightFFtruelP od == . From these two curves, it is observed that ),|( od FFtruelP =  is not 
isotropic. The curve ),|( leftFFtruelP od ==  is always below the curve ),|( rightFFtruelP od == . 
This phenomenon can be explained by occlusion. Because in the training phase, the left images are 
always treated as the reference images, therefore occlusion occurs on the left side of foreground objects.  

   
 (a)          (b)    (c) 

   
 (d)        (e)       (f) 

 Figure 4. (a)(c)(d) Fattening effect, (b) occlusion, (e) outliers in low texture regions, (f) aperture effect. 

3.1.2 Low-texture regions 

The learned distribution also reveals the matching ambiguities in regions with low texture. Figure 4(e) 
shows the distributions ( | )sP l true T=  and ( | )sP l outlier T= , with the texture strength as the variable. 
Higher probability of being outliers can be observed in low-texture regions. 



3.1.3 Aperture effect 

Figure 4(f) shows the matching state distribution )),8(|,( ToTstrueoutlierlP = . These curves are 
obtained by fixing the texture strength at intermediate levels and using the texture orientation as the 
changing variable. It can be observed that the learned distribution has higher probability of being outliers 
when the texture orientation is horizontal, while the probability of matching the true depth is higher 
when the texture orientation is vertical. 

3.2 Depth computation 
Depth maps are estimated using the method described in Section 2.4. The initial depth values are 
obtained using window-based SSD matching. The computation of matching scores is available at the 
stereo evaluation web site [22]. They are first truncated and then converted into raw matching measures                                     

When computing the likelihood according to Eq. (1), the outlier constant is 0.1α = . For the prior 
function in Eq. (3), the parameters in the robust function are 0.05pe =  and 0.6pσ = . On a 2 GHz PC, 
each iteration of Metropolis-Hastings sampling takes 5 to 10 seconds. The algorithm converges within 
100 to 200 iterations. With the segmentation-based optimization, the algorithm converges within 30 to 
60 seconds, which is a great improvement over single-pixel based method in terms of computational 
speed. 

We tested the proposed algorithm using several image pairs. A leave-one-out strategy is adopted in the 
training and testing process to avoid using the same images in training and testing. To evaluate the 
proposed algorithm, we compared the single-pixel based Metropolis-Hastings algorithm with the 
segmentation-based optimization. The MAP-MRF portion of the algorithm remains unchanged in this 
comparison. Table 1 shows that the segmentation-based method largely improves the depth error for the 
benchmark images.  

Algorithm LBS 

all    untex    disc 

LBS (seg) 

all    untex    disc

GC 

all    untex   disc 

BP 

all    untex   disc 

Tsukuba 3.86   3.53   16.74  2.03  0.77  11.75 4.91  4.36  20.79 3.62  3.83  15.17 

Sawtooth 2.19   1.00   11.3 1.34  0.90  5.88 3.94  1.89  19.86 4.82  9.73  12.13 

Venus 4.32   7.89   14.81 2.28  3.26  18.80 2.79  3.00  25.69 12.72  2.60  18.5 

map 0.75   0.00   9.84     0.83  1.67  9.70 1.33   2.14  12.7 0.76   2.61  7.73 

Table 1. Comparison of the error percentage rates in stereo algorithms with the matching scores 
computed using 5x5 windows. LBS – the proposed algorithm. LBS (seg) – the proposed algorithm with 
segmentation-based optimization. GC- the graph cut algorithm. BP – the belief propagation algorithm.  

The proposed algorithm was also compared with other state-of-art algorithms including the graph cut [3] 
method and the belief propagation method [18]. Table 1 shows that the proposed algorithm has the 
lowest overall error rates. One thing we need to point out is that the score we quoted here for other state-
of-art algorithm differ from those listed on [22] since we run those algorithms with a window based 
matching cost. It is true that using single pixel based matching on the Tsukuba images and some of the 
other test images in [22] will result in lower error rates. The reason we investigated window based 
matching is that it is more robust when image noise or illumination changes are not negligible.  Figure 5 
shows depth maps estimated using different algorithms. It can be observed that the fattening effect 
around the foreground objects such as the lamp has been suppressed in our results and correct depth is 
computed in the textureless areas. 



4  Discussions 
In this paper, an algorithm is proposed to learn the SSD matching errors as a function of the stereo 
images, the scene structure, and the matching windows size. Preliminary results show that this approach 
is very promising. However, several issues need to be further studied. Among them, the first question is 
what are the other image and structure attributes that can be used in the learning of the matching state 
distribution. Several promising features include thin structures, depth gaps, and texture attributes on the 
foreground and the background objects along depth boundaries. Another issue is the segmentation in 
stereo computation. Currently, a joint colour and depth segmentation significantly improves the 
performance and results of the algorithm. In our experiments, we found that the final depth results are 
sensitive to the segmentation parameters which implied that segmentation and stereo computation should 
not be in separate processes. Segmentation-based depth search [19],[20] and fast algorithms such as the 
Swendsen-Wang cuts [1] can be explored to further improve results. Finally, it is conceivable that the 
proposed learning-based approach can be generalized to other stereo algorithms. How to learn the depth 
estimation errors in these algorithms is an interesting research problem. 

        
     (a)                                    (b)      (c)    (d) 

    
(e)       (f)     (g)   (h) 

Figure 5. (a) LBS (pixel-based) (b) LBS (segmentation-based) (c) BP, 5x5 SSD (d) GC, 5x5 SSD. (e) 
LBS (pixel-based) (f) LBS (segmentation-based) (g) BP, 5x5 SSD, (h) GC, 5x5 SSD. 
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