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Abstract 
 

The visual hull relates the shape of an object to its silhouettes. This paper 
develops the theory of the visual hull of piecewise smooth objects, as those 
used in CAD applications. We show that the surface of the visual hull can be 
constructed using patches of nine visual event surfaces of the aspect graph of 
the object. A detailed analysis allows to prune away many surfaces and 
patches that are not relevant to the construction. Examples of construction of  
visual hulls are presented. 

 
1. Introduction 
Many computer vision algorithms are based on particular image lines. The lines called 
occluding contours or limbs are the projection of the contour generators, which are loci 
of points where there is a depth discontinuity along the line of sight.  
Silhouette based recognition and reconstruction techniques use the contours that 
occlude the background. Volume Intersection (VI) reconstructs 3D shapes from multiple 
silhouettes [4], [14]. The contours occluding the background are also used for 
extracting shape and orientation of rotating objects [15], [25]. The geometric concept of 
visual hull [11] puts understanding 3D shapes from silhouettes on a firm theoretical 
ground. 
 The aspect graph, a user-centered object representation first proposed by Koenderink 
and van Doorn [9], takes into account the contours that occlude both the background 
and the object itself, and the image lines, which are projections of the creases (surface 
normal discontinuities). 
This paper develops the theory of the visual hull of piecewise smooth surfaces, 
including planar surfaces, such as those used in CAD applications. The paper links 
visual hull and aspect graph of these objects, and extends the results presented in [1] 
and [13] for smooth surface objects. In the rest of the introduction we overview the 
basic concepts of visual hull and aspect graph. 
The visual hull (VH) is a geometric entity that allows understanding capabilities and 
limits of the techniques for recognizing or reconstructing concave 3D shapes using 
silhouettes [11]. Let a visual line or free line relative to an object O be straight line not 
sharing any point with O. The visual hull VH(O) is defined as follows: a point p 
belongs to VH(O) iff no free line relative to O passes through p. The VH(O) is the 
largest object silhouette-equivalent to O, i.e. that produces the same silhouettes as O 
observed from any possible viewpoints outside the convex hull CH(O) of O. VH(O) is 
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also the closest approximation of O that can be obtained by VI using viewpoints outside 
CH(O).  
An intuitive physical construction of the VH is as follows. Fill the concavities of the 
object with soft material, and scrape off the excess material with a ruler grazing the 
hard surface of the object in all possible ways. The result is the VH.  In Fig.1, O is one 
half of an object of revolution, CH(O) its convex hull, where the concavity has been 
filled. The last image shows VH(O), and in particular S”VH, the surface that covers the 
concavity.  

 
Fig.1. A piecewise smooth object O, its convex hull CH(O) and its VH VH(O) 

Algorithms for computing the VH of polygons, polyhedra, solids of revolution and 
smooth surface objects can be found in [1], [11-13], and [17].  
The basic idea of the aspect graph is the topological clustering of the line drawings of 
the object, consisting of occluding contours and projections of the creases. The range of 
all possible viewpoints can be partitioned into a set of maximal open regions where the 
topological structure of the line drawing, the aspect, is stable. Crossing the boundaries 
between these regions produces a topological change, the visual event (VE). The union 
of the boundaries is also called the bifurcation set. Aspects and VEs are arranged into 
the aspect graph (AG), where nodes are labeled with aspects, and arcs with VEs. The 
perspective AG corresponds to a 3D viewpoint partition, the parallel AG to a 2D 
partition of the Gaussian sphere.  
The VEs and the related boundary surfaces (or lines for the parallel AG) depend on the 
object type. Planar-face objects were first considered [7]. For curved surface, the VEs 
can be determined as the singularities of the visual mapping [8], [16], [18], [19], [21]. 
Other approaches have also been used [6]. In this paper we will refer to the catalogue 
presented by Rieger for piecewise smooth surfaces, consisting of 19 VEs for surfaces 
without cross-caps [22], [23].   
 Algorithms for constructing the AG have been given for polyhedra, articulated objects, 
solids of revolution and various categories of curved objects under parallel and 
perspective projection [2], [5-7], [18], [20], [22-24].  
The rest of the paper is organized as follows. In Section 2 we show that the VH surface 
consists of patches of the bifurcation set surfaces generated by nine particular VEs. In 
Section 3, a detailed analysis of this surface allows to prune away many surfaces and 
many surface patches not relevant to the construction of the VH. In Section 4 we 
construct the VH of two sample objects. 
 
2. Linking visual hull and aspect graph 
In the following we will deal with piecewise smooth algebraic surface objects, also 
including planar patches. We will assume that the surfaces are non singular, that there 
are only isolated lines making contact with the surface at more than three points of 
curved patches or creases, and that the curved patches are generic. Algebraic surfaces 
include CAD rational parametric patches, which can be transformed into implicit 
algebraic equations [10]. 



  

 In general, the surface SVH of VH(O) can be divided in two parts: S' VH coincident with 
the surface S of O, and S”VH, which “covers” some concavities of O (Fig.1). Actually, 
in some cases S”VH can also bound volumes not connected to O [11]. In this section we 
will relate S”VH to the boundary surfaces of the AG of the object corresponding to nine 
particular VEs.  
A necessary condition for a point to lie on the surface SVH of the VH is the following: If 
a point p belongs to SVH, through p passes at least one straight line intersecting O only 
in boundary points. 
Since the VH is the object reconstructed by VI from any possible viewpoint outside the 
convex hull [11], any point of SVH also belongs to the surface of (at least) a tangent 
cone formed by the half lines starting at a viewpoint and tangent to O. Then, for finding 
points of SVH we can restrict ourselves to consider points of straight lines making 
contact with S without intersecting the object.  
Clearly, if a line makes contact at only one point, this point belongs to S’VH. Then, for 
finding S”VH we will consider lines making two (as in the case of Fig. 1) or three 
contacts at different points with S. We have already ruled out lines making contact at 
more than 3 points (excluding planar faces), since these isolated lines cannot form 
surfaces. There are three possible contact points:  crease points, fold points (where the 
surface is smooth) and vertices, where (for generic objects) three creases meet. Let 
these cases be denoted by C, F and V respectively. For instance, the sequence FFC 
stands for contact at two fold points and at a crease point. In the following we will show 
that for each relevant contact case a necessary condition for a point to belong to S”VH  is 
that it lies on a particular VE surface. 
 

2.1 Lines making three contacts 
Four cases are relevant: FFF, FFC, FCC, and CCC. We exclude cases including V, 
which for generic positions generate only isolated lines. In the relevant cases the link 
between VH and AG is immediate, since the four types of lines produce the four cases 
of the VE triple point (VEs 3, 9, 13, 14 of Rieger’s catalogue) (Fig. 2).  

 
Fig.2- The VE triple point 

For brevity, we will not write here the equations that determine the contact points. 
These can be found in [20] for parametric patches and two or three contact points, and 
in [18] for implicit and parametric smooth surfaces. 
 

2.2 Lines making two contacts  
Five cases can take place. Let us consider first the cases FF, FC, CC. Lines of these 
kind fill volumes, so they need a radical pruning. Let us consider a line L of any of 
these three types, and the orthographic projection along L of two infinitesimal segments 
of the contour generators at the contact points. It has been shown in [1] and [13] for the 
case FF that: a necessary condition for L to contain points of S”VH  is that the 
projections of the contour generators share a common tangent. The proof, that we omit, 
also holds for cases FC and CC.  
This necessary condition links these cases to the AG, since the condition also specifies 
the three cases of the VE tangent crossing (Fig. 3), VEs 5, 10 and 12 of Rieger’s 
catalogue.  
 



  

 
Fig. 3. The VE tangent crossing 

 
Finally, we consider the cases VF and VC involving a vertex and a fold or crease 
respectively. These cases correspond directly to the surfaces generated by the two cases 
of the VE vertex crossing (Fig. 4), VEs 17 and 18 of Rieger’s catalogue. 
 

 
Fig.4 –Vertex crossing 

Adding up, we have shown that a necessary condition for a point to lie on S”VH is that it 
belongs to one of nine bilocal and trilocal VE surfaces. 
 
 
3. Pruning the visual event surfaces  
Constructing the VH could be done as follows. 

1) Determine the surfaces generated by the nine relevant VEs  
2) Construct the partition of the viewpoint space formed by these surfaces and the 
surface S of the object. Each cell of this partition belongs entirely or does not belong 
at all to the VH  
3) Prune the cells which do not satisfy a condition detailed in the following 
4) Select and merge with the object the cells belonging to the VH  

For performing steps 1) and 2) we could exploit Rieger’s algorithms for computing the 
AG of piecewise smooth objects [22], [23]. For pruning the cells (step 3) the following 
rule can be applied. Define positive the side of a relevant VE surface where free lines, 
compatible with the contact points, pass. A cell belonging to VH must lie on the 
negative side of all its boundary patches. Unfortunately, this condition is not always 
sufficient [1]. 
Checking if a cell belongs to VH can be done as follows. If the cell is also bounded by a 
patch of S, intersect O with the plane tangent at a random fold point Pf of this patch. If 
the intersection is a curve completely enclosing Pf, the cell belongs to VH. This is the 
case to face for most concavities. If the cell is not connected to O, chose a random point 
in it, and construct the cone formed by the half-lines passing through the point and 
tangent to O. The cell belongs to the VH if all the full lines containing the half lines 
also intersect O somewhere else.  
However, this approach is likely to be computationally infeasible except for simple 
objects, considering the great number of cells (O(n18 d18 ) where n is the number of 
patches and d their degree [19]). 
Actually, a great deal of pruning and trimming of the VE surfaces can be done before 
constructing the partition. 
First, recall that all the VE surfaces where the generating tangent line intersects the 
object elsewhere must be discarded. Second, also recall that the VH cannot exceed the 
convex hull. Third, many more surfaces and patches can be pruned away by 
investigating whether free lines, compatible with the geometry of the surface at the 
contact points, pass through points of the VE surface. This analysis, which will be 
presented in the next sub-sections, extends the analysis presented in [1] and [13] for 
smooth objects. The lines and surfaces that do not admit free lines compatible with the 
contact point will be called active. 



  

The surfaces surviving all these pruning operations form a much restricted set of 
possible VH boundaries, and will be used for constructing a partition of CH(O)-O 
containing by far less cells. 
 
3.1 Active surfaces making three contacts. 
Although the analysis reported in [1], [13] refers to the case of smooth surfaces, i.e. to 
the case FFF, it also holds without changes if one or more contours are projections of 
creases, that is also for cases FFC, FCC, CCC. Observe that the ruled surface making 
three contacts with S is divided by the contact curves into four patches, two unbounded 
external and two internal. The four contact cases are all determined by the relative 
spatial position of the creases (or folds) that determine the triple point. Three different 
spatial arrangements, shown in Fig. 5(a),  (b) and (c), are possible.  
 

 
Fig.5. Active segments of lines making three contacts  

For each case the figure shows the orthographic projection along L and a 3D view. In 
the orthographic projection the arrow, pointing outside the object, marks the limb (or 
crease) E3 covered by the others. In the 3D views only the short (actually infinitesimal) 
segments marked with a thicker line belong to S. The origami-like structure supporting 
the segments is intended to clarify the 3D relative position of the contour generators. 
The results are summarized in Fig.5. Case (a) does not produces active surfaces; case 
(b) generates one internal active patch; in case (c) the two external patches are active. In 
the figure, the active segments are highlighted with solid lines.  

 
3.2 Active surfaces making two contacts. 
In this case the lines making two contacts and the surface generated are divided into one 
internal and two external unbounded parts. We will discuss first the cases FF, CC, CF, 
and afterwards the cases VF and VC.  
 
Active surfaces FF, CC, CF 
 The case FF and its various sub-cases have been discussed in [1], [13] to which the 
reader is referred for details. The sub-cases are determined by the gaussian curvature of 
S at the tangency points. Since the gaussian curvature is not defined for creases, here 
we will present the arguments and results of  [1], [13] in a different way, so that they 
directly apply to cases FF and CF.  
Consider the line L, making two contacts with S at p1 and p2, a point p of this line, and 
an infinitesimal rotation of L about p. If such rotation is possible without intersecting 
the object near p1 and p2, the rotated line L’ is a free line and the point does not belong 
to S”VH. Let C1 and C2 be infinitesimal segments of the contour generators near p1 and 
p2, which can be approximated with a segment of the osculating circles. Also let PC1 and 



  

PC2 be the osculating planes, and p1” and p2” be the intersections of the rotated line L’ 
with these planes. Now, let us project all these entities orthographically onto a plane P 
normal to L. If in this plane the projections of both p1” and p2” lie on the external side 
of the projections of the corresponding contour generators C1 and C2, L’ is a free line. 
Various sub-cases occur, according to the curvatures of the projections of the contour 
generators and the relative positions of the external sides. In the following, if not 
otherwise explicitly stated, we will refer to the projections onto P of the various entities, 
which we will indicate for simplicity with the same names of their 3D counterparts. 
Consider first the case where the internal sides of the contour generators lie on the same 
side of the (projection) of the common tangent T. The various sub-cases possible are 
shown in Fig.6. The internal sides are hatched. 

 
Fig.6.Sub-cases of tangent crossing where the external sides of the contour generators 

lie on the same side of T 
In all these sub-cases, only the internal patch is candidate to be active. Sub-case (a), 
where both the centers of curvature lie on the internal side, is not active, and the 
corresponding VE surface can be discarded. This is easily seen, since the line L can be 
rotated about any of its points in the plane containing L and T without intersecting the 
object. Similar arguments show that also sub-case (b) is not active. On the contrary, no 
rotation about points of the internal segment compatible with the surfaces at the contact 
points is possible in sub-cases (c) and (d), and therefore the internal patches are active. 
Sub-case (e) is more complex, and its analysis requires the values of the radii of 
curvature r1 and r2 of (the projections) of C1 and C2. It has been shown in [1], [13] that 
the internal segment of the 3D line L consists of an inactive segment p1 pM starting at 
the point p1 of the contour generator where the center of curvature lies on the external 
side, and an active segment pM p2 ending at the other point, such that  
 |p1pM| / | pMp2| = r1 /r2  
Consider now the sub-cases where the external sides of the contour generators lie on 
opposite sides of T (Fig .7). 
In all these sub-cases, only the external patches are candidate to be active. It can be 
shown that sub-cases (a) and (b) are not active, and that sub-cases (c) and (d) generate 
two active external patches. The sub-case (e) requires a more complex analysis, whose 
results are as follows.  

 
Fig.7.Sub-cases of tangent crossing where the external sides of the contour generators 

lie on opposite side of T 
Consider the external segment starting at p2, which is the point of the contour generator 
with the center of curvature on the internal side, and assume r1 > r2, as in Fig.(e), The 



  

external segment is divided into one active part p2pM and an inactive part pM∞. The 
point pM is such that |p1pM|/|p2pM| = r1 /r2. 
If  r1 ≤ r2, the whole external segment is active. Now consider the external segment 
starting at p1, and assume  r1 ≥ r2, as in Fig. (e). In this case the external segment is 
totally inactive. If  r1 < r2, the segment p1pM’ is inactive. The remaining segment pM’∞ is 
active. The position of pM’ is such that |p1pM’| / |p2pM’|= r1 /r2. For the case FF, for 
which it was originally developed in [1], [13], the above analysis only requires the type 
of the gaussian curvature at the tangency points, exception made for the cases (e) in 
Fig.6 and Fig.7, where the values of the radii of curvature of the projections of C1 and 
C2 are required. These radii can be easily obtained in 3D for a fold point (see [1], [13] 
for the details) and in P.  
The above results also apply to the cases involving creases as contour generators, the 
only difference being that the contour generator equation is known a priori. From this 
equation we can easily find the radius of curvature in the osculating plane and in P (for 
brevity we omit the details).  
 
Active surfaces VF and VC 
These surfaces are cones with vertex in V. Also in this case we will analyze the 
orthographic projections of the vertex V (and of two infinitesimal segments of the 
creases meeting at the vertex) and the contour generator F or C onto a plane normal to 
L, for understanding if an infinitesimal rotation of L about one of its points, and 
compatible with the geometry of S near the contact points, is possible. Various sub-
cases arise. The three sub-cases (a), (b) and (c) in Fig.8 all refer to a convex vertex 
projection.  

 
Fig.8. VC or VF sub-cases (convex vertex projection) 

It is easy to see that in these sub-cases an infinitesimal rotation of L about any of its 
points without intersecting the object near the contact points is possible, and then these 
surfaces can be pruned away. In the figures it is shown the trace in P of possible planes 
containing L and L’. p1” lies on the osculating plane of the contour generator, and p2” 
in the plane containing the segment of creases meeting at V. The sign or value of the 
curvature of the contour generator C does not affect these conclusions. 
The sub-cases (d), (e) and (f), shown in Fig. 9, refer to a concave vertex projection. For 
analyzing sub-case (d), let us consider a plane rotating about L. Two kinds of 
intersections with O are possible. For planes as P1 in the figure, the intersection is 
shown in (d1). It is clear that no rotation about points of the internal segment can take 
place in this plane. In any other plane as P2, no rotation at all is possible (d2). Then the 
internal segment is active. Sub-case (d) can be seen as a limit situation of sub-case (d) 
in Fig 6, for a vanishing radius of curvature of one contour generator. 
Consider sub-case (e). The intersection of P1 with the object (e1) shows that the external 
segments are not active. The intersection (e2) with P2 shows that also the internal 
segment is not active, and then the whole surface can be pruned. Finally, consider sub-
case (f). Two kinds of intersections are possible. The intersection (f1) with a plane as P1 
shows that the internal segment is not active. The intersection (f2) with any other plane 
as P2  shows that the external segments are active. Sub-case  (f) could be seen as a limit 
situation of sub-case (d) in Fig.7 



  

Usually, CAD objects are not generic objects. Then we will explicitly consider another 
case of contact at two points, since it is relevant to CAD objects. This is the case of two 
coplanar and rectilinear edges. It could be considered the limit situation of sub-case (d) 
in Fig. 6, or of sub-case (d) in Fig. 7, for vanishing curvatures of both contours. In the 
first case it produces a planar internal active patch, in the second two active planar 
external patches. Coplanar edges often generate overlapping planar active surfaces, as 
shown in the following examples. 

 
 

Fig. 9. VC or VF sub-cases (concave vertex projection) 
 
4. Examples 
For simplicity, in the examples all the active surfaces are generated by lines making two 
contacts. 

 
Fig.10. The object is shown in (a), the potentially boundary patches in (b) and (c), the 

two cells formed by these patches in (d) and (e), the VH in (f). 
Example 1. Consider the object in Fig 10(a). In all, there are five potential boundary 
patches. Patches due to overlapping surfaces are counted once. Two planar patches, P1 
and P2 are shown in Fig. 10(b). P1 is due to three patches overlapping, due to lines 
making contact at L1 and L3, L1 and L2, L2 and L3. Also, P2 is generated by various 
overlapping patches. In Fig.10(c) we show three other patches, P3, P4, and P5. Patch P3 
is generated by the lines passing through vertex V1 and making contact at crease C 
between V3 and V5. This is an instance of sub-case (d) in Fig. 9. Observe that, as soon 



  

as the line passing through V1 and grazing C becomes V1V5, where V5 is the middle 
point of C, the two-contact case turns into the inactive sub-case (e) in Fig. 9. 
Then, all the lines passing through V1 and making contact with C between V5 and V4 
are not active. Patch P4 is planar and is generated by the lines making contact at V5 and 
L2. Actually V5 is the only point of C that originates a tangent crossing event (sub-case 
(c) of Fig. 6) together with edge L2. Patch P5 is symmetric to P3. 
The five patches produce a partition with two cells, shown in Fig. 10(d) and (e). The 
first cell does not satisfy a necessary condition to belong to the VH, since it lies on the 
positive side of patches P3, P4, and P5. The second satisfies this condition, and it clearly 
belongs to the VH, shown in Fig. 10(f). 
Example 2. The object is shown in Fig.11(a). The possible boundary patches are 6. 
Three planar patches, P1, P2 and P3 are shown in Fig. 11(b). There are 4 other planar 
infinite active patches (P4, P5, P6 and P7  shown in Fig 11(b)), but they lie outside the 
convex hull, and can be pruned.  
Lines making contact at the semi-circles C1 and C2 produce a conical surface whose 
internal part is divided into an active patch P8 and an inactive patch P9. This is an 
instance of sub-case (e) in Fig.6. Two other relevant patches exist, P10 and P11 in Fig 
11(e) and (f), generated by the lines passing through the vertices V1 and V2 and crease 
C1. These are instances of sub-case (d) in Fig.9. 
As in Example 1, the patches produce 2 connected cells (not shown for brevity in the 
figure). The upper cell does not lie on the negative side of all its boundary patches and 
then does not belong to VH. In Fig. 11(g) we show the VH, which is bounded by P8 and 
by parts of P10 and P11. 

 
Fig.11. The object (a). Three planar potential active surfaces (b). Four planar surfaces 
that can be pruned (c). Only P8 is potentially active for this conical surface (d). Two 

symmetric potential active surfaces (e), (f). The resulting VH (g). 
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