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Abstract

In this paper we illustrate the use of the Beckmann-Kirchhoff model for
analysing rough surface reflectance. The Beckmann-Kirchhoff model is a
physical model that describes the reflectance of light from rough surfaces.
The parameter of the model is the surface slope, or ratio of the surface rough-
ness to the correlation length. We show how this parameter may be estimated
using pairs of surface images, subject to different illumination directions.
With the parameter to hand, the Beckmann-Kirchhoff model may be used
to perform Lambertian reflectance correction, and hence shape-from-shading
may be applied to the rough surfaces. The model may also be used for sur-
face re-illumination. We present experiments to illustrate the utility of the
method for each of these tasks.

1 Introduction
Reflectance modelling is a task of pivotal importance in the analysis of image data by
computer. For instance, in computer graphics it is necessary for generating realistic im-
ages of synthetic scenes. In computer vision, on the other hand, reflectance models form
the basis of surface analysis techniques such as shape-from-shading and photometric
stereo, and may also be used to estimate the physical properties of materials from pas-
sively sensed image data [5]. The simplest and most commonly used model is Lambert’s
law which can be used to describe diffuse reflectance from matte surfaces of constant
albedo. However, although convenient due to the fact that the observed brightness is in-
dependent of viewer direction, Lambert’s law fails to accurately describe reflectance from
both rough and shiny surfaces. Hence, there has been considerable recent effort to devel-
oping more complex models of the reflectance process. Hence, Wolff [12] has used the
Fresnel term to model refractive attenuation in shiny surfaces, while Oren and Nayar [12]
have a semi-empirical model that can be used to model departures from Lambert’s law for
rough surfaces.

Despite these advances, the analysis of rough surfaces still poses an important chal-
lenge. Roughness is a measure of the statistical variation in the topographic relief of a
surface [3]. Hence, the reflectance from rough surfaces represents an important class of
texture. There are many ways in which roughness can be characterised. However, in
physics it is the surface roughness, σ , and the correlation length, T , that are most com-
monly used to represent the height distribution and the spatial scale of surface roughness.
The height distribution is frequently assumed to be Gaussian [8], while the correlation
length has been modelled using both Gaussian [2] and exponential [8] distributions. Al-
though the exponential distribution gives a better fit to the data, since the derivative is
discontinuous at the origin, it can lead to problems in estimating higher order surface
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properties, such as surface gradients. Another way of characterising roughness is to use
the RMS slope, i.e. the ratio of the RMS roughness to the correlation length [4]. However,
reliable estimation of the RMS slope has proved to be an elusive problem [3].

In this paper we are interested in using reflectance models to analyse the surface prop-
erties and shape of rough surfaces. The effect of variable surface roughness is to alter the
relative contributions of the specular and diffuse reflectance to the total reflectance. The
Torrance-Sparrow model [10] is among the most popular models which aims to incor-
porate the effect of roughness into the specular reflectance component. The calculation
of reflectance is based on geometrical optics, and is hence applicable when the surface
irregularities are much larger than the wavelength of incident radiation. Nayar et al. [7]
showed that under these conditions the Torrance-Sparrow model approximates the physi-
cal optics model developed by Beckmann and Spizzichino [2]. Alternative physical-optics
approaches to the problem of specular reflection from rough surfaces can be found in the
literature [1, 6, 12]. One of the shortcomings of these aforementioned models is that they
ignore the effect of roughness on the diffuse reflectance component. However, this ef-
fect has been incorporated into the model developed by Oren and Nayar [12]. The major
drawback of both the Torrance-Sparrow model and the Oren-Nayar model is that they rely
on the assumption of surface isotropy and this in turn requires that the cavities associated
with roughness have no preferred direction. Obviously, such isotropic cavitated surfaces
cannot exist, because they are inconsistent with surface geometry [5]. Based on this ob-
servation, Ginneken et al. have recently developed a model that can be used to predict
reflectance from isotropic rough surfaces that have both specular and diffuse components
[5]. The parameters of their model are the surface roughness measured in terms of the
RMS slope, the albedo, and the balance between the diffuse and specular components.
They also claim that the model can be used to predict changes in surface texture as the
illumination and viewing angles vary.

However, the scalar theory of scattering from rough surfaces developed by Beckmann
[2] may offer and interesting alternative to these computational models. The Beckmann
model commences from the Helmholtz-Kirchhoff diffraction integral [8]. To overcome
some problems involved in solving this integral, an approximation known as the Kirchhoff
boundary condition is made. This approximation limits the validity of the scalar theory to
the case of scattering close to the specular direction. However, it should be noted that the
polarization properties of the scattered light are not accounted for by this model. Beck-
mann has used the Kirchhoff scatter theory to develop reflectance models that can be ap-
plied to surfaces with different scales of roughness, i.e. slightly-rough, moderately-rough
and very-rough surfaces. These models also give different scattering behaviour when the
form of the surface correlation function is varied. For very-rough surfaces, Beckmann
has explored the effects of Gaussian and exponential correlation functions. In its original
form, this model is limited to the case of scattering close to the specular direction. How-
ever, Vernold and Harvey [11] have recently modified the Beckmann model to overcome
this limitation and have extended the model to large angles of both incidence and scatter.

One of the problems with Beckmann-Kirchhoff theory is that it is not at first sight
particularly well suited for use in computer vision because of its mathematical structure.
The aim in this paper is to explore whether the model can be used to analyse rough sur-
faces. We commence by showing how the model can be used to estimate the surface slope
parameter. With this parameter to hand the model may be used to recover corrected Lam-
bertian reflectance, and hence standard shape-from-shading methods may be applied to



rough surfaces. The recovered surface may be re-illuminated using the rough reflectance
predictions of the Beckmann model.

2 Beckmann-Kirchhoff Scatter Theory
In this paper, we confine our attention to the exponential correlation function since it gives
a better fit to measured surface data for very-rough surfaces [3, 8]. Under this restriction,
the diffuse reflectance function which results from Beckmann’s model is

I(θi,θr,φr) ≈ 2πF2(θi,θr,φr)T 2/Av2
z σ2(1+ v2

xyT
2/v2

z σ2)3/2 (1)

The geometrical factor F(θi,θr,φr) is given by

F(θi,θr,φr) = (1+ cosθi cosθr − sinθi sinθr cosφr)/cosθi(cosθi + cosθr)

The model depends on both the incidence and the reflectance angles. In the above
equation θi and (φi = π) are the zenith and azimuth angles of the illuminant and θr

and φr are the zenith and azimuth angles of the viewer (on local tangent planes). Also,
vx = k(sinθi − sinθr cosφr), vy = −k(sinθr sinφr), vz = −k(cosθi +cosθr), v2

xy = v2
x +v2

y
and k = 2π/λ , where λ is the wavelength. The physical properties of the surface are cap-
tured by the surface slope m = σ/T which is given in terms of the surface roughness σ
and the correlation length T . This equation may also be used to model the total reflectance
since the specular contribution is negligible for very-rough surfaces. The parameter A is
the area of a plane sheet on which the scattering coefficient is defined [2]. This parameter
is only effective when computing the absolute scattered intensity. However, since it orig-
inally comes from the instrumentation characteristics, we do not consider it as a physical
surface property. In Section 3, after estimating surface slope, we also describe how an
approximate value for A can be found.

2.1 Modification of Vernold-Harvey
The Beckmann model fails for large incidence angles and large scattering angles. To
overcome this problem, Vernold and Harvey [11] have recently developed a modification
of the Beckmann model that gives excellent agreement with experimental scattering data
from rough surfaces at both large angles of incidence and at large scatter angles. The fail-
ure of the Kirchhoff theory to handle wide-angle scattering and large angles of incidence
has been highlighted by other authors [4] too. Although Vernold and Harvey [11] agree
with the observation that the local and mean surface normals do not coincide, they do
not agree that a new obliqueness factor must be derived using the local surface normal.
Instead, they claim that it is appropriate to use the mean surface normal when modelling
rough surfaces, under conditions where the scale of the test or probe beam is much larger
than the spatial scales under study. In the Vernold and Harvey modification [11], the
geometrical factor (F2) used in the Beckmann model is replaced by the cosine of the inci-
dence angle which comes from Lambert’s cosine reflectance law. They have applied their
modification to that variant of the Beckmann model which assumes a Gaussian correla-
tion function for the surface. Here, we apply their modification to the Beckmann model
for very-rough surfaces with an exponential correlation function. Hence, by replacing the
term F2 with cosθi in Eq. (1), the reflectance function for the modified B-K model is

I(θi,θr,φr) = 2π cos(θi)/Av2
z m2[1+ v2

xy/(v2
z m2)]3/2 (2)

3 Surface Slope Estimation
For very-rough dielectric surfaces, we can use the B-K model to estimate the surface slope
m = σ/T . Note that the quantity σ

√
2/T has also been referred to as the RMS gradient



σg [8]. Furthermore, Caron et al. [4] have recently computed the angle of RMS slope
given by θ0 = π/2− tan−1(

√
2m). They have shown that for incidence angles smaller

than θ0, the reflectance predictions delivered by the Kirchhoff theory are reliable. Once
an estimate of m is to hand, we can fit the B-K diffuse reflectance model to the data. Such
a model is potentially useful since it allows photometric correction to be performed and
the Lambertian reflectance component to be recovered.

Our technique for estimating the surface slope m = σ/T is as follows. First, we
collect images with two different angles of illumination. Using the two images we make
measurements of the reflectance I1, I2 at a corresponding point on the surface. This is
straightforward in practice since we keep the surface fixed and move the light-source
direction. Let the two different angles of incidence be θi = θ1 and θi = θ2. In both images
the planar surface is perpendicular to the viewing direction, i.e. θr = 0. To deal with
problems of local texture arising from the surface roughness, we average the intensities
over local neighborhoods. Although the use of two different wavelengths is possible, here
we use only one wavelength λ . Under these illumination conditions and from Section
2 we can write vxy(θi) = (2π/λ )sin(θi) and vz(θi) = (2π/λ )[1 + cos(θi)]. We use the
average quantities to compute the ratio I1/I2. From Eq. (2) the intensity ratio is given by

I1
I2

=
cos(θ1)v

2
z (θ2)

cos(θ2)v2
z (θ1)

{
1+ v2

xy(θ2)/[v2
z (θ2)m

2]
1+ v2

xy(θ1)/[v2
z (θ1)m2]

}3/2

(3)

Hence, the estimate of surface slope parameter m = σ/T is given by

m =

{
1

K−1

[
v2

xy(θ2)
v2

z (θ2)
−K

v2
xy(θ1)

v2
z (θ1)

]}1/2

(4)

where K = {[cos(θ2)v
2
z (θ1)I1]/[cos(θ1)v

2
z (θ2)I2]}2/3. By substituting one of the two pairs

(I1,θ1) or (I2,θ2) together with λ and m into Eq. (2), an estimate of the parameter A can
also be obtained. The absolute scattered intensity for any illumination condition can be
computed using Eq. (2) together with the estimates of m and A.

4 Photometric Correction for SFS
With estimates of the surface slope parameter m = σ/T , we may use the diffuse re-
flectance model of Eq. (2) to perform surface analysis. We commence by considering
how the model may be used to perform photometric correction and hence recover the
Lambertian reflectance component IL = cos(θi) from the raw diffuse reflectance. With
corrected Lambertian reflectance to hand, we can apply conventional shape-from-shading
techniques to recover shape (surface normal) information. Recently, we have proposed
the photometric correction approach for semi-empirical reflectance models in [9].

4.1 Model As a Function of Incidence Angle
For some problems in computer vision, such as shape-from-shading, it is the incidence
angle behavior of the reflectance models that is of primary interest. Hence, here we
derive a formulation for the specific case when the angle between the light-source and
the viewing directions is small, and so θi = θr and φr = π . In shape-from-shading only
one image of the object is available. When the light source and viewing directions are
identical, the maximum fraction of the surface is illuminated and visible. Under these



conditions the reflectance equation can be simplified by replacing the quantities vxy =
vx = 2k sin(θi) and vz = −2kcos(θi) in Eq. (2). Hence, the modified B-K model for this
case is

I(θi) ≈ λ 2/8πAm2 cos(θi)[1+(tan2(θi)/m2)]3/2 (5)

In Fig. 1, we show the behaviour of the modified B-K model. The different curves in
each panel show the diffuse intensity I as a function of the incidence angle θi for different
values of surface slope m = σ/T . The dashed curve in each panel is the prediction of
Lambert’s cosine law. The plots are for a wavelength of 700nm. The left panel (a) is
for the case where the light-source and the viewing directions are identical, i.e. θi = θr

and φr = π , while there is no restriction for the surface shape (Eq. 5). From the different
curves it is clear that the larger the surface slope, (i.e. the surface roughness σ with respect
to the correlation length T ), the higher the diffuse intensity. In particular, for m = 1.6 and
m = 1.8, the brightening effects are very intense compared to the Lambertian reflectance
curve. In the right panel (b), the light-source direction is perpendicular to the viewing
direction while the surface is assumed to be parabolic (i.e. one of zero Gaussian curvature)
with the minimum (zero) curvature direction along the y axis. Hence θi = π/2−θr and
φr = 0. The equation for this specific case can be derived from Eq. (2). Here, by contrast
with the top panel, as the surface slope decreases from m = 1.8 to m = 1.0, then so the
diffuse intensity increases. Also, the maximum intensity moves away from θi = 0 and
occurs when the incidence angle is close to θi = 25◦. This behaviour also means that the
reflectance function is not injective, and so, not invertible.
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Figure 1: Diffuse intensity by the modified B-K model vs incidence angle (degrees) for surface
slopes m = 1.0,1.2, ..,1.8 compared to Lambertian model (dashed) for two illumination conditions:
(a) θi = θr and φr = π (left), (b) θi = π/2−θr and φr = 0 on surfaces with parabolic shapes (right).

4.2 Lookup Table Solution
We can not recover the Lambertian reflectance component cos(θi) directly from the mod-
ified B-K model since the analytic solution of the resulting equation is intractable. Hence,
we adopt a lookup table approach as a practical alternative. To do this we tabulate cos(θi)
as a function of the computed diffuse intensity I from Eq. (5). Since the Lambertian re-
flectance IL is proportional to cos(θi), this allows us to approximate IL using the measured
intensity I. In practice, the larger the number of incidence angles tabulated (0 ≤ θi ≤ π

2 ),
the more precise the correction process. Once an approximate value of the surface slope



is estimated (m = m0) using the technique outlined in Section 3, the lookup table is com-
puted using Eq. (5).

Under conditions in which the viewer and light-source directions are almost identical,
the modified B-K model is amenable to our lookup table approach since, like Lambert’s
law, the brightness decreases monotonically with increasing incidence angle (Fig. 1.a).
As a result the reflectance function appearing in Eq. (5) are injective and invertible. In
other words, each measured brightness value I = I0 is related to a single value of incidence
angle θi = θ0 and hence to a single Lambertian reflectance value IL = cos(θ0). Note also,
that for other illumination geometries where the reflectance is dependent on both the
incidence and reflectance angles, the lookup table approach is not usable.

5 Experiments
The images used in our experiments have been captured using an Olympus 10E cam-
era. Each surface has been imaged under controlled lighting conditions in a darkroom.
The objects have been illuminated using a single collimated tungsten light-source whose
wavelength is approximately 700nm. The light-source direction is recorded at the time
the images are captured. The objects used in our experiments are a terra-cotta bear and a
cylindrical sandpaper.

5.1 Estimating Surface Slope
Our first experiment is to estimate surface slope m for rough surfaces (Section 3) com-
posed of terra-cotta and sandpaper. First we need to measure two mean-intensity values
I1 and I2 for two different angles of incidence θ1 and θ2. One way to do this is to use a
small approximately planar patch on each object surface. However, if such planar patches
can not be found, one may use a planar surface of the same material and roughness. For
θ1 = 30◦, θ2 = 45◦ and λ = 700nm, we measure the mean-intensity ratio for the sandpa-
per I1/I2 = 1.1004 and for the terra-cotta I1/I2 = 1.1147. Hence, using Eq. (4) the surface
slope is estimated m = 1.41 for the sandpaper and m = 1.29 for the terra-cotta.

5.2 Photometric Correction
The estimate of surface slope m allows us to fit the modified B-K model to the reflectance
data for each object. The next experiment is to use the raw images of the terra-cotta bear
and the cylindrical sandpaper together with the fitted models and perform photometric
correction. Both raw images are captured under almost identical light-source and viewing
directions. For each surface, we construct a lookup table, as described in Section 4, using
the model of Eq. (5) and the value of surface slope m estimated for each surface. We
present the results in Fig. 2. Here, the panels in the left-hand column show diffuse raw
images (I), the panels in the second column show the recovered Lambertian images (IL)
and the panels in the third column show the difference images (|I− IL|). Here, the darker
the point in a difference image, the larger the difference. We use the absolute function to
show both positive and negative differences. It can be seen in Fig. 1.a that for m = 1.3
(terra-cotta bear) if θi < 45◦ then IL < I, whereas for m = 1.4 (sandpaper), if θi < 60◦
then IL < I. Although the correction process has an effect at almost every location on
each surface, the differences are most marked where the inclination of the object surface
is steepest. To show the effects of the photometric correction process, we plot Lambertian
intensity IL versus original (raw) intensity I in the panels in the fourth column, and, (IL−I)
versus I in the panels in the fifth column of Fig. 2. From these plots it is clear that for the
sandpaper cylinder where m = 1.41 the decrease in intensity is much larger in magnitude



than for the terra-cotta bear where m = 1.29, while the increase is relatively stronger for
the terra-cotta bear. For both objects, the difference in intensities is maximum for small
intensities and is minimum for intermediate intensities.
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Figure 2: Photometric correction using the modified B-K model: original images (I), corrected
Lambertian images (IL), difference images (IL − I), IL versus I and (IL − I) versus I (left to right).

5.3 Shape-from-Shading and Re-illumination
Each corrected Lambertian image obtained in the last experiment can be used as an input
image to shape-from-shading. Here we use the method of Worthington and Hancock
[13]. This is a geometric technique which constrains the surface normals to fall on a cone
whose axis points in the light-source direction and whose apex angle is the inverse cosine
of the corrected Lambertian reflectance. The main reason for adopting this method is
that it is relatively simple and makes the recovery of surface normal direction relatively
straightforward. The needle maps of the surface normals obtained using this method are
shown in Fig. 3. Here the panels in the left-hand column show the surface normals
extracted from raw images whereas the panels in the centre column show those extracted
from Lambertian images. The field of difference between these surface normals is shown
in the panels in the right-hand column. Here, the complex surface structure of the terra-
cotta bear, is clearly visible. For the sandpaper, the symmetrical shape of the cylinder is
nicely preserved.

We now turn our attention in more detail to the effects of the Lambertian correction
process on the surface normal directions. The changes in surface normal directions occur
both in the zenith angles and in the azimuth angles. In qualitative terms, when the image
becomes brighter then the apex (opening) angle of the Lambertian cone becomes smaller.
Hence the zenith angle of the surface normal decreases. When the image becomes darker,
on the other hand, then the zenith angle increases. To illustrate the effect of Lamber-
tian correction process, we have produced scatter plots for the azimuth and zenith angles
for surface normals extracted from the diffuse images I and the corresponding corrected
Lambertian images IL. In Fig. 4, the top row is for the terra-cotta bear whereas the bot-
tom row is for the sandpaper cylinder. Here, the panels in the left-hand column show the
scatter plots for the zenith angle, i.e. cos−1(IL) versus cos−1(I), while the panels in the
centre column show the scatter plots of the azimuth angle. In both scatter plots, the hori-
zontal axis shows the angle extracted from the surface normals using I while the vertical
axis shows the angle extracted from those using IL. In the zenith angle plots, there is no
scatter and the data points trace out a curve. The reason for this is that the Lambertian
shape-from-shading method constrains the surface normals to fall on a cone whose apex



angle is the arc-cosine of the brightness. The axis of the cone points in the light-source
direction, and since the light-source and viewing directions are identical, the apex angle
of the cone is equal to the zenith angle. The azimuth angle plots, on the other hand, do
exhibit scatter. The reason for this is that the surface normals are free to rotate about the
cones subject to smoothness constraints. However, in each of the azimuth plots there is a
clear regression line.
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Figure 3: Needle maps of the surface normals obtained by applying shape-from-shading [13] to
the raw images (left) and to the corrected Lambertian images (centre) which are shown in Fig. 2;
The field of difference between the two needle maps (right).

To investigate the stability of the surface normals under changes in azimuth angle,
the panels in the right-hand column show the difference in azimuth angle for the surface
normals using I and IL as function of the Lambertian zenith angle cos−1(IL). It is clear
that the largest difference in azimuth angle occur at intermediate zenith angles. Hence,
these are associated with reasonable changes in surface normal direction. This means
that the modified B-K model results in significant differences in surface normal direc-
tions. Although this effect is mainly attributable to the larger differences in IL, it may
also reflect problems associated with the curvature dependant smoothing employed in the
shape-from-shading algorithm. This uses the principal curvature direction to adjust the
azimuth angle of the surface normal. When the surface is umbilic (e.g. at spheres) or
hyperbolic (e.g. at saddles) there are singularities in the field of principal curvature direc-
tions and these in turn may lead to unstable azimuth angle estimates. It is also interesting
to note that shape-from-shading results in small differences in azimuth angle for large
zenith angles and near object limbs. The reason for this is that the boundary condition
constrains surface normal to be perpendicular to the occluding boundary. This stability
effect in the azimuth angles is distributed to the neighboring locations on the object limbs.

Once the accurate surface normals are in hand, re-illuminating object surfaces is a
straightforward task. Since at each point on the surface, the local surface normal and



the viewing direction are known (and fixed), we can use the modified B-K model (Eq.
2) to compute the diffuse reflectance for any light-source direction. Using the surface
normals extracted from the recovered Lambertian images (Fig. 3, centre), we experiment
with re-illuminating surface objects from five different directions. In Fig. 5, we show
re-illuminations of the two surface objects under study when the light-source direction
is re-positioned. Here we move the direction of lighting on the image plane normal,
in the horizontal direction. For the terra-cotta bear, again, we set m = 1.29 whereas
for the cylindrical sandpaper we set m = 1.41. From the left-hand column to the right-
hand column, the light-source directions are (18◦,−90◦), (9◦,−90◦), (0,0), (9◦,90◦) and
(18◦,90◦) respectively, where the first and second numbers are the values of the zenith
and azimuth angles. The images reflect the underlying shape of the object in a consistent
manner.
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Figure 4: Plots for the incidence zenith (left) and azimuth (centre) angles (degrees) extracted from
the recovered surface normals for the terra-cotta bear (top) and the sandpaper cylinder (bottom):
the horizontal axis shows the angles extracted from the surface normals obtained by applying SFS
to the diffuse image (Fig. 3, left), while the vertical axis shows those obtained by applying the
same SFS method (and settings) to the Lambertian image (Fig. 3, centre); Plots for the difference
between diffuse and Lambertian azimuth angles versus the Lambertian zenith angle (left).

6 Conclusions
In this paper, we have shown how the modified Beckmann-Kirchhoff model for very-
rough surfaces can be used for surface slope estimation, photometric correction and re-
illumination. The surface slope is estimated using a pair of images acquired under differ-
ent illumination directions. Lambertian images are recovered from raw images by means
of lookup tables computed using the fitted model for the objects illuminated nearly in the
viewing direction. Once the Lambertian image is recovered, then the surface normals may
be recovered using a Lambertian shape-from-shading method. Here, we show that pho-
tometric correction improves the accuracy of surface normals, and that by re-illuminating



these surface normals we generate realistic images. The results for this task are also
interesting. Hence, the modified Beckmann-Kirchhoff model appears to offer an interest-
ing alternative to existing rough reflectance models such as the Oren-Nayar model, and
clearly has potential for applications beyond the scope of this paper.

Figure 5: Diffuse images generated using the modified B-K model (Eq. 2) on the recovered surface
normals (Fig. 3, centre) re-illuminated from five light-source directions: (18◦,−90◦), (9◦,−90◦),
(0,0), (9◦,90◦) and (18◦,90◦), from left to right.
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