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Abstract 
 

We present a supervised approach to recover 3D models of buildings from 
multiple uncalibrated views. With this method the user matches 3D vertices 
in the images and defines the 3D model of the building with the help of 
elementary and intuitive geometric constraints. At the same time, a graph 
describing relationships between vertices is built. Then, unknown 
parameters of this graph are estimated non-linearly through a bundle 
adjustment to recover the building model and the camera parameters. This 
method asserts that geometric rules are perfectly respected. This approach is 
used to recover independently 3D parts of the building with suitable images. 
Then all these independent 3D models are merged to obtain a full multi-
scale model of the building. An example on real images is given. 

 

1  Introduction 
 
In this work, our objective is to present a semi-automatic building reconstruction 
method. Our main contribution is an easy-to-use modeling method based on the 
definition of intuitive geometric constraints. The method yields a 3D model with the 
smallest description in term of the number of parameters, the absolute certainty to 
respect the geometric rules defined by the user, and the possibility to merge easily 
several models to obtain a full and multi-scale global 3D building model. 
3D modeling of buildings from images is an active area in computer vision. Many 
methods already exist and can be divided in three categories: the low-level features 
approaches, the primitives-based approaches and the hybrid ones that combine the two 
others.  
The low-level features approaches describe buildings as a low-level features set. Most of 
the time, an automatic features matching is performed between images of a sequence to 
calibrate cameras and to compute the 3D structure. Features’ matching has widely been 
studied (especially in the case of points) and is particularly efficient in the case of small 
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baseline between images (cf. [10] [12] [13]). This method is used by M. Pollefeys [15] 
on video sequences, and T. Werner and A. Zisserman [20] on static images. F. 
Schaffalitzky and A. Zisserman address in [17] the case of widely separated and non-
ordering views. Nevertheless, the model surface needs to be defined from the resulting 
3D clouds of low-level features to perform a photo-realistic rendering or measurements 
with these approaches. Several strategies exist, Werner and Zisserman [20] 
automatically obtain a planar segmentation, Pollefeys [15] meshes the object with the 
help of a dense matching and Morris and Kanade [16] exploit image information to 
determine a triangulation.   
In the primitives-based approach, the user provides parametric primitives to model the 
building. These 3D primitives are located in images. The non-linear minimisation of the 
distance between the primitive detected in images and the back-projected model is 
performed to estimate the structure and the motion of the scene. This approach is used in 
[5] [9]. An advantage of such an approach is that simple geometric rules are implicit in 
the definition of primitives (e.q. orthogonality and length equality in a cube…). 
Nevertheless, this method is limited by the number of 3D elements available in the 
library. 
Lastly, hybrid approaches try to merge the advantages of these two approaches. Cipolla 
and Robertson [2] present a method based on statistical estimators. Bartoli and Sturm 
[1] suggest a strategy in the case of multi-coplanarity constraints and, Grossman and 
Santos-Victor [7] implicitly describe constraints to estimate the model as an 
unconstrained optimisation problem. Our approach is close to the Grossman’s approach 
except that we define a larger set of constraints, we use a bundle adjustment method that 
does not require an initialisation of camera motions (previously published by the authors 
in [3]), and our method can easily merge 3D models with different scales (e.g. an 
accurate window model added to a low resolution building model). 
In this paper, we describe the modelization of the building. Then, the bundle adjustment 
algorithm is described. Finally, a real sequence is used to recover the 3D model of a 
castle. 
 

2 Modeling the Building with Constraints 
 
In this section, we explain our method to implement constraints in the building model. 
First, we give an overview of the elementary geometric constraints used. Then, we 
describe the full data structure with relationships between vertices and geometric 
constraints, and we discuss its drawbacks and its advantages. Finally, we explain how to 
simply merge two 3D models to obtain a more complex 3D model (with multiple scale 
levels for example). 
 

2.1 Definition of Elementary Geometric Constraints 
 
In this work, the building model is described as a cloud of 3D points. Elementary 
geometric rules are defined to organise and to structure this 3D cloud. This is a major 
difference with feature-based algorithms that recover 3D cloud from low-level features 
matching without a global organisation. In our method, each new point of the model is 
defined with a geometric constraint in relation to already existing points (named 
antecedents). Geometric constraints and their associated antecedents are described in 
Table 1. This table indicates the equations checked for each rule and the degrees of 



   

 

freedom left to the new vertex. These degrees of freedom correspond to parameters that 
need to be estimated non-linearly with the help of 3D-images matching.  The total 
number of unknown parameters, describing the building model, is the sum of the degrees 
of freedom associated to each vertex.  
 

Name Description Antecedents Equations 
(constraints) 

Degrees of 
freedom 

Free point A
 

None A(x,y,z) 3  
(coordinates) 

Vectorial 
equality 

A

B

C

D

 

A,B,C CD=AB 0 

Parallelism A

B

C

D

 

A,B,C CD=λAB 
1 

(1 length) 

Single 
orthogonality 

A
B

C

 

A,B (AC) ⊥ (AB) 
2 

(1 length 
1 angle) 

Double 
orthogonality 

C

A

B

D
 

A,B,C 
(AD) ⊥ (AB) 

and 
(AD) ⊥ (AC) 

1 
(1 length) 

Planarity 

C

A

B

D

 

A,B,C AD=αAB+βAC 
2 

(2 coordinates) 

Distance 
equality D

C

B

A

 

A,B,C ||CD||=||AB|| 2 
(2 angles) 

Table 1 : The set of geometric constraints. The degrees of freedom indicate the number 
of parameters that needs to be estimated with the help of 3D-image matching to 
completely position 3D vertices. (Couples of bold letters correspond to vectors, the 
underlined letters correspond to the constrained points) 

 

2.2 Global Structure of the 3D Model 
 
The model structure used in our method is an oriented graph. In this oriented graph, a 
node represents a 3D vertex, and each set of branches arriving to this node represents 



   

 

the geometric rules used to define this 3D vertex. The branches origins are the 
antecedents described in the previous section. One can notice that free points do not 
have antecedents, and their 3D position can directly be computed without knowing the 
positions of the other vertices. Figure 1 describes the relationships between vertices. If 
the 3D positions of A and B are known, we use the geometric rule linking C to A and B 
to compute the 3D position of C. The position of C depends on its associated geometric 
rule and on the 3D positions of its antecedents (A and B). Recursively, the position of B 
depends on the positions of its own antecedents… Our method yields a constraint model 
described with a minimum of parameters, but the 3D position of a vertex depends on the 
position of many others (except for free points such as A).  

In figure 2, we give an example of a graph representing a rectangular parallelepiped. 
This graph is not unique and depends on the user description of the model. Two free 
points (1 and 2) are the seed of this model, and the parallelepiped model has only 9 
degrees of freedom (6 for the parallelepiped poses in 3D space and 3 for the internal 
lengths of the model). This graph is a description of a parametric object and is close to 
the primitive-based approaches.  

 

2.3 Merging of Different Models 
 
In the previous section, we defined a graph description of 3D objects. To build a 
realistic model of a building, it is easier to design independently several models such as 
doors, windows, building body… Once all these models have been defined, each part 
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Figure 1: A graph describing the links between C and its two antecedents A and B. B 
has also three antecedents. 

Figure 2: Graph description of a rectangular parallelepiped. The numbers indicate the 
vertex references. The vertices n°1 and n°2 are the seed of this graph, each of them 
can be evaluated without knowledge of the others.. 



   

 

has to be located in a unique framework to constitute a complete and coherent final 
model. Imagine that we want to complete a model A with a model B. Our goal is to 
define the scale factor between A and B and the rigid transformation between the A 
framework and the B one. This is obtained by defining three points of the model B into 
the model A. First, the user defines three new points in the model A. These new points 
are matched in images and reconstructed as any other points. Then, these 3 points are 
matched with vertices in the model B. This is enough to compute the scale factor and the 
rigid transformation between A and B. This merging approach keeps the accuracy of 
each model (up to a scale factor), and the model B position is geometrically constrained 
due to the use of geometric constraints to define the three common points (the user can 
impose windows corners to be in the frontage of the building).   
 

3 Bundle Adjustment Process 
 
We now use the 2D-3D matching of point to evaluate parameters of the model through a 
bundle adjustment. First, we present the general bundle adjustment method in the case of 
a cloud of 3D points. Then, we apply this approach to constrained models described in 
the previous section. 
 

3.1  Case of the Cloud of Unconstrained 3D Points 
 
We address the case of a cloud of 3D points without constraints. Knowing some 2D 
projection of these 3D points in the images we try to recover the positions of the 3D 
points and the camera parameters (poses and intrinsic parameters). A classical answer is 
a non-linear optimisation method called bundle adjustment ([5] [7] [10] [17] [18] [20]). 
Bundle adjustment aims to minimize distance between 2D points detected in images and 
projection of the associated 3D points. More precisely, the criterion C to minimise is ( i: 
3D points index, j: cameras index, Pr : projection matrix, int : intrinsic parameters, f : 
projection function, (Tx, Ty, Tz): translation vector, (α, β, γ): angle of Euler, δij: 0 
when the 3D point i is not visible in the image j, 1 otherwise): 
 
 
 
 
 
 
With this approach, the 3D scene is described by extrinsic (6N) and intrinsic (kN) 
parameters of N cameras and by P parameters associated to the 3D model. 6N+kN+P 
parameters are estimated with this method. 
In fact, the knowledge of the position of the 3D points and the knowledge of the intrinsic 
camera parameters are enough to calculate camera poses. From this observation, we 
suggest a new algorithm for bundle adjustment (already published in [3]), which hides 
parameters of camera poses and does not require any initialization of these parameters. 
Furthermore, this approach requires evaluating kN+P parameters, offers a larger 
convergence area, and is faster than the classical approach (previous results).   
With this algorithm, we minimise the criterion C: ( i: index of cameras, j: index of 3D 
points, f2: camera poses estimation function, E: extrinsic matrix estimated with a pose 
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estimation algorithm f2, f1: function that expresses the intrinsic matrix in function of the 
intrinsic parameters, I: intrinsic matrix estimated with the function f1, foc: focal length, 
(x,y,z) 3D coordinates of vertices P3D, δij: 0 when the 3D point i is not visible in the 
image j, 1 otherwise): 
 
 
 
 
 
 
 
 
In practice we use the Levenberg-Marquard algorithm to lead the non-linear 
optimisation and the Dementhon algorithm [4] (function f2) to estimate camera poses.  
 
3.2 Case of 3D Building Models with Constraints 
 
In the previous section, we gave an overview of our bundle adjustment algorithm in the 
case of unconstrained cloud of 3D points. In the specific case of constrained models, the 
bundle adjustment is more complicated. The measurements used are the projection of 
3D vertices located in images. The parameters estimated are the degrees of freedom 
existing in the building model. There are no direct relationships between the unknown 
parameters and the measurements such that a modification of one parameter can modify 
many measurements. This is due to the constraints introduced in the model, and the 
consequence in the optimisation process is a non-sparse and non-diagonal Jacobian 
matrix (a contrario, in the case of unconstrained cloud of 3D points the Jacobian matrix 
is sparse and closed to a diagonal form).  
Nevertheless, the optimisation process searches the vector of parameters that minimised 
the sum of distances between back-projected vertices and their 2D projections in 
images. With our modelization, the geometric constraints are always perfectly respected, 
this yields a reduction of the number of parameters associated to the building model but 
this introduction of hard constraints modifies the underlying topology of the non-linear 
criterion (defined section 3.1) and can generate local minima. 
Experimentally, this method converges to a good solution when the model is well 
balanced. Nevertheless, if we try to reconstruct a multi-scale model (e.g. the body of a 
building and a window), we meet difficulties because some parts heavily weight due to 
the large number of measurements available (window), while others are neglected 
(frontage (only 4 corners)). Our solution is to build each element independently, using 
adapted images, and to merge them in a final model.  
 

4 Example on a Real Sequence 
  
The “Château de Sceaux” has been chosen as an example. It is a French XVII century 
castle. Some specific elements have been selected. 22 photographs of these elements 
have been taken with a digital camera1 and 2 focal lengths 28 mm and 135 mm have 
been used. The image resolution is 2000x3008 pixels, the distortions have not been 
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corrected and the focal lengths are unknown. The photographs have been taken from the 
ground and no information on the camera poses is available. If we look in detail at the 
castle elements, it appears a wide variety of details (windows, gutters, bas relief…). The 
user has to choose the details he wants to reconstruct (in function of the needs), because 
it would be too costly to reconstruct each detail of the building. Nevertheless, it is 
always possible to complete the model later by adding new part of the building 
reconstructed with a new set of images (section 2.3). Here, we present the reconstruction 
of the castle body, the downstairs and upstairs windows, one sort of dormers windows, 
and the central advance of the frontage (figure 3).  

Each element has independently been reconstructed from adequate images. The figure 4 
presents the example of a downstairs window. With only three images available for 
downstairs windows, we define a constrained model using our graph description (section 
2) and we apply our bundle adjustment method (section 3) to recover the 3D structure 
and the camera parameters. After a manual surface definition (see [14] for an automatic 
extraction algorithm), textures have been extracted from the images. This process has 
been applied to each element.  
 

Figure 3: Images of the sequences describing each selected elements of the castle. 

Figure 4: Example of the downstairs window. The 3 initial images are on the top-
left. On the top-right, there are the wire-frame and the surface model. On the 
bottom, the final model of the windows with accurate texture. 



   

Then, all the elements have been merged together to obtain a full model of the castle. 
For example, to locate the downstairs windows, window corners have been defined in 
the frontage with geometric constraints and reconstructed with the help of images (the 
body ones). These windows are located up to the castle body resolution, but their 
proportion and their texture have previously been defined with close-range images. For 
repetitive elements, unique models have been used. This merging process has been 
applied to each detail and the results are shown in figures 5 and 6. 
 

 

  

Figure 6: Final textured model. We can notice the high quality texture on 
windows and the balustrate in front of the upstairs windows. 

Figure 5: Global model without texture. All the specific elements have been 
merged to obtain a multi-scale model. 



   

 

Two days were necessary to obtain these results and the 2D RMS error was around 8 
pixels. Difficulties to detect the buildings corners (hidden by glutters…) and the non 
correction of distorsion may explain this RMS error. Nevertheless, with such a stratified 
approach, we have been able to recover a complete model while conserving the accuracy 
of each element (up to a scale factor) and extracting the texture from the better images 
available. Furthermore, we can improve the model with new elements, if needed, and we 
can adapt the reconstruction time and the accuracy to the need. 
 

5 Conclusion 
 
In this study, a new approach for building reconstruction has been presented here. We 
suggest a method using constraints on 3D points features with simple and intuitive 
geometric rules. This result is an easy-to-use tool that offers the flexibility of low-level 
features approaches and the modularity of primitive-based methods. Moreover, a new 
bundle adjustment approach (without camera poses initialisation) has been used to 
estimate these models. Finally, this method has successfully been applied to a real 
sequence, and a multi-scale model of the “Château de Sceaux” obtained.  
Further work will increase the quality of the camera calibration with the help of an 
automatic interest features matching based on this initial reconstruction. The merging 
step will also be updated to obtain a better accuracy. 
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