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Abstract

In this paper, a class of sparse regularization methods are considered for de-
veloping and exploring sparse classifiers for face recognition. The sparse
classification method aims to both select the most important features and
maximize the classification margin, in a manner similar to support vector
machines. An efficient process for directly calculating the complete set of
optimal, sparse classifiers is developed. This set can be explored in order
to understand the sensitivity of feature selection process to small paramet-
ric changes. We show that this method can be used to construct a useful
classification hyper-plane for faces represented via an appearance model. In
addition, the stability of the classification process is explored and the incor-
poration of prior knowledge about the importance of individual features is
considered.

1 Introduction

One of the fundamental problems with any image processing or computer vision task is
the specification of a suitable vocabulary for representing the data. In the case of face
recognition, this takes the form of the extraction of a set of parameters or dimensions
which will describe the differences between people, rather than differences between im-
ages of people. This is true even after the images have been coded with the aim of the
exclusion of non-facial differences as within-person variation still needs to be excluded.

One method of classification, which has shown good generalization ability when ap-
plied to large vocabularies is Support Vector Machines (SVM) [13]. Once a suitable
coding of the data has been achieved, SVMs extract the optimal hyperplane for separating
a pair of classes by minimizing the structural risk of miss-classification. This is a regu-
larization, or penalty–based, approach. SVMs have been previously used for face classi-
fication [6, 11], demonstrating consistently better recognition performance than standard
nearest neighbour methods. It was however necessary to vary the number of dimensions
on which the decisions were made, apparently using high-variance eigenvectors. In this
paper, a method for performing feature selection using SVMs is described where the op-
timization occurs in parameter space. By using a 1-norm model complexity function,
a sparse set of features is produced because many of the classifier’s parameters will be
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estimated to be zero. This has been termed Lasso regression [12], or robust [1] or ba-
sis pursuit classification [3]. Other approaches for SVM feature selection are described
elsewhere [14, 15].

When performing feature selection, it is important to understand the stability of the
feature selection process. This can be achieved by exploring neighbouring sparse classi-
fiers which are slightly more or less complex. In this paper, a new procedure for finding a
complete set of sparse SVMs is described, which generates all the globally optimal clas-
sifiers as a sequence of linear programming sub-problems. This technique is then applied
to the face recognition problem. In addition, this paper also considers whether the eigen-
values associated with the appearance model eigenvectors can act as suitable parametric
priors for providing evidence about the relative importance of the different features and
thus improving robust classification.

In this paper, a linear SVM is considered which performs 1-of-m classification [10].
An alternative approach to multi-class face recognition [6] constructs 2m decision trees,
allowing individual comparisons between faces to be converted into a recognition from
a gallery. Similarly, a non-linear SVM has been shown to be more effective at visually
determining the gender of faces [7]. The visual division between genders was shown
to be notably curved, and this was captured by the support vector margin. While it is
expected that other representations for multi-class recognition and more flexible kernels
will provide improved recognition accuracy, the main purpose of this paper is to describe
how the (weighted) feature selection procedure works and analyze its application to a high
dimensional (500+), feature selection, classification problem with weighted priors.

2 Appearance models

Facial coding requires the approximation of a manifold, or high dimensional surface, on
which faces lie. This allows accurate coding, recognition and reproduction of previously
unseen examples. A number of previous studies [4, 5] have suggested that using a shape-
free coding provides a ready means of doing this, at least the when the range of pose-angle
is relatively small. Here, the correspondence problem between faces is first solved by find-
ing a pre-selected set of distinctive points (corners of eyes or mouths, for example) which
are present in all faces. This is typically performed by hand during training. Pixels thus
defined as part of the face are warped to a standard shape by standard grey-level interpo-
lation techniques, ensuring that the image-wise and face-wise coordinates of images are
equivalent. If a rigid transformation to remove scale, location and orientation effects is
performed on the point-locations, they can then be treated in the same way as the grey-
levels, as again identical values for corresponding points on different faces will have the
same meaning.

Although these operations will linearize the space, allowing interpolation between
pairs of faces, they do not give an estimate of the dimensions. In addition, redundancies
between feature-point location and grey-level values cannot be described. Both these
problems can be addressed by Principal Components Analysis. Given a set of N vectors
qi (either the pixel grey-levels, or the feature-point locations) sampled from the images,
the covariance matrix C of the images is calculated,

C =
1
N

N

∑
i=1

(qi − q̄)(qi − q̄)T , (1)



and orthogonal unit eigenvectors Φ and a vector of eigenvalues λ are extracted from C.
Redundancies between configuration and pigmentation are removed by performing

separate PCAs upon the shape and grey-levels, providing shape parameters wsi and texture
parameters wti. These are combined to form a single vector for each image on which
second PCA is performed [5]. This gives a single feature vectors

x = Φc
T

[
WsΦs

T (qs − q̄s)
Φt

T (qt − q̄t)

]
(2)

for each image, assuming zero-mean weights and where Ws is a diagonal vector of
weights compensating for the characteristic scales of the shape and texture parameters.

This ‘appearance model’ allows the description of the face in terms of true, expected
variation – the distortions needed to move from one to another [8]. However, it will
code the entire variation between the faces which the ensemble, both between and within
individuals. The following study aims to select those dimensions most appropriate for de-
scribing differences between individuals, so allowing effective recognition. The variation
present in the first two dimensions of such a model is provided in Figure 1. Note that
these include a mixture of pose, expression and identity variation.

Figure 1: The first two dimensions of the face-space in the appearance model. From the
left, −2s.d., the mean +2s.d..

3 Exploratory Basis Pursuit Classification

Basis pursuit classification is a regularization–based approach that can be used to de-
velop sparse, kernel classifiers. The aim is to jointly minimize both a loss function that
measures how well the classifier models the data and a penalty function that measures the
complexity of the classifier. Specifically, for basis pursuit classification, the regularization
function

J =
l

∑
i=1

(ti − yi)2 +θ ||w||1 (3)

is considered, where θ is the non-negative regularization parameter which controls the
relative importance of the loss and penalty functions, t is the target vector of class labels,



y is the corresponding class prediction vector and w is the classifier’s parameter vector.
Basis pursuit classification was introduced as a generalized Robust Linear Programming
method [1] and has a corresponding approach for regression [3]. It differs from other
regularization approaches by the method used to specify the model’s complexity/penalty
function, as ridge regression uses a 2-norm.

Exploratory Basis Pursuit Classification (EBPC) generates the complete set of opti-
mal models as a function of the regularization parameter. Instead of specifying a single
regularization parameter, θ , and then calculating the classifier’s optimal parameters, the
aim is to examine how the classifier’s parameters and performance are affected by locally
altering θ and thus obtain important information about the classifier’s sensitivity. A fuller
description can be found elsewhere [2].

3.1 Model Sparseness

For simplicity, it is assumed that classifiers are linear in their parameters, so the predic-
tions can be calculated as

y = w ·x+b (4)

where x are the input features provided to the classifier and b is the corresponding bias
term. In addition, in this study, it is assumed that the basis functions are linear, so param-
eter selection is equivalent to feature selection (although this is obviously not necessarily
the case). The classifier’s output is also thresholded outside the margin [-1, 1], as occurs
in SVMs and those data points that are correctly classified and lie outside the margin do
not directly affect the calculation of the model’s parameters and are termed in-active. The
objective function is then convex with a global minima.

This regularization function produces a sparse solution with many zero parameters as
can be derived from Equation 3. By differentiating J with respect to w and equating to
zero

XT (t−Xw) = θsgn(w) (5)

where X is the matrix of features for the training data. This is only valid for parameters
that are already non-zero. If a parameter is in-active, it will remain so until a constraint

|xT
i (t−y)| = θ (6)

is activated. When this occurs, the non-zero parameter becomes part of the active set and
its values can be directly calculated

w = H−1(XT t−θsgn(w)) (7)

where H = XT X is the local Hessian for the active data and parameter subspaces. It
should be noted that in this application, H with not in general be proportional to the
identity matrix. Since it may be computationally expensive to invert H each time, more
efficient rank 1 inverse Hessian update procedures could be used [9]. As parameters
change their values and the active sets of parameters change, so will the set of active data
points. These properties and conditions are global because the basis pursuit regularization
function described in Equation 3 has a global minimum for each value of θ . In addition,
within a local region, w is a linear function of θ . The bias term b can be calculated
separately.



3.2 Constructing the Optimal Classifier Space

While these relationships can be used to explain the properties of an EBPC optimal clas-
sifier for a particular value of the regularization parameter, it is useful to consider how
a sparse classifier changes as the regularization parameter is altered. In this section, an
algorithm is proposed that generates the complete set of optimal sparse classifiers as a
function of the regularization parameter. In addition, this is achieved in an efficient man-
ner as the algorithm is formulated as a sequence of linear programming sub-problems
which have a simple form.

To begin, obviously the model with w = 0 is optimal as it represents the simplest
possible model, and is the solution of the regularization function when θ is large. As θ is
reduced, at least one parameter will initially become active, see Equation 6, and its value
can be calculated according to Equation 7. This direct calculation of the parameter values
is valid as long as the set of active parameters and data points remains unchanged. This
can be posed as a linear programming sub-problem where the aim is to maximally reduce
θ , subject to a set of linear inequality constraints that control the active parameter and data
sets [2]. When the linear inequality constraints are violated, this changes the members of
the active sets and a new linear programming sub-problem is constructed. This terminates
in a finite number of iterations as θ is reduced to zero, and generates every optimal sparse
classifier, where the parameters are a piecewise linear function with respect to θ . This is
an extension to the classification case of the LAR/LASSO algorithm [12].

This construction process starts with the simplest possible classifier and iteratively
includes extra parameters in the active feature set and drops points from the active data
set. However, the process is not strictly monotonic, and at some stages, parameters may
be removed from the active set and data points re-introduced to the active data set. While
this is data dependent, it should be noted that usually the active Hessian is reasonably
well-conditioned as the process is effectively a forwards selection process. Also, when
the problem is reasonably well–posed, the number of iterations is a near linear function
of the number of features plus number of data points.

3.3 Incorporating Prior Knowledge

When data sets are sparse, feature selection is an ill-posed problem. Prior knowledge
about the relative importance of the different features can be incorporated into the EBPC
process. From Equation 6 if the feature is larger in magnitude, then it will become non-
zero sooner in the process and indeed, it is generally recommended that all potential
features are scaled to zero mean, unit variance before being used for EBPC.

Once this has been performed, it is possible to re-scale the features in order to reflect
the relative prior importance of each feature. If this information is contained in the vector
p, then the regularization function becomes

J =
l

∑
i=1

(ti − yi)2 +θ
n

∑
i=1

|piwi| (8)

and features or parameters become active when

|pix
T
i (t−y)| = θ (9)



The larger the prior is, the sooner the feature will be included in the active set. In this
paper, power transformations of the eigenvalues are proposed as suitable soft priors and it
is demonstrated in sections 4.4 and 4.5 that this can both improve the classifier’s general-
ization performance and stabilize the features selected.

4 Results

4.1 Materials

The appearance model was built from an ensemble of 592 facial images, comprising 211
different individuals; this sub-divided into groups varying on facial pose, expression and
lighting. Males and females were present in approximately equal proportions, and the
individuals were drawn from a range of ages and ethnic groups. All the images had a
uniform set of 68 landmarks found manually. A triangulation was applied to the points
and bilinear interpolation used to warp the images to a standard shape and size which
would yield a fixed number of pixels, here set to 5000. Lighting levels were normalized
to equate the mean and variance at each pixel.

Tests were carried out using a disjoint set of 153 images of 22 individuals (21× 7 +
1×6). These showed a significant level of variation, having previously been used in other
experiments. Feature locations were found manually, since the issue at hand was the final
representation; the images were then coded on the appearance model. Tests performed
on a 10-fold cross-validation basis, with the EBPC process fully pursued for each target.
Since this procedure inevitably grouped some of the images together in test or training
sets, the whole procedure was repeated with different initial random orderings.

4.2 Exploring Sparseness

Figure 2 shows the evolution as a function of θ of a single classifier separating an indi-
vidual from the others. As expected, there is a steady increase in the number of features
contributing to the classifier (developing non-zero weights). It should also be noted that a
number of classifier parameters change sign or show points of inflection when θ ≤ 5. This
demonstrates the presence of Simpson’s paradox in this data-set, and implies that using
values much below it may over-fit the data and so qualitative interpretation of the param-
eter weights may be miss-leading. The presence of Simpson’s paradox is somewhat sur-
prising, as the eigenvectors are orthogonal with one another, but may reflect non-linearity
in the clouds of identity-specific points, or may be due to the essential non-linearity of
faces due to their variable shape.

4.3 Criterion Selection

The effect of varying the parameter θ is shown in Figure 3 with respect to the accuracy of
classification of the training and test images, taking the mean for different individuals and
cross-validation sets. Clearly while the errors for the training images smoothly decline
to zero at a value of θ = 4, the test images show rather more noise and only plateau at
a lower value. Thus the selection of a critical value of θ is unclear. Two classifier sets
were chosen, those at a knot point with the highest value of θ allowing perfect training
classification, and those with the lowest such value. This bracketed the possible values.



2 4 6 8 10 12 14 16 18 20 22

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

theta

x

Figure 2: Effects of varying the parameter θ on the classifier’s parameters.

4.4 Specifying Eigenvalue Priors

While the probability of inclusion of an eigenvector in the classifiers was determined by
the eigenvalues of the combined appearance model eigenvectors, it is not obvious that
the relative proportions (as opposed to the orderings) of this distribution was the most
appropriate set of values. This was addressed by setting the priors to

pi = λ α
i (10)

and then searching with α = [0,2]. This is similar to the Box-Cox power transformations
in linear regression. Note that the power of 0 corresponds with equal weighting. The
results (shown as number of errors out of 3363 tests) are shown in Figure 4.

As well as the obvious main effect of α , with lowest errors for the fourth root of
the eigenvalues for both criteria, there is an interesting interaction. While the number
of errors rises with increased power, it does so faster for the less sparse classifier, with
the α = 2 eigenvalues giving more errors when the classifier is made less sparse. As
the power factor increases the classifier becomes less representative. This reflects the
power transformation decreasing the set of eigenvectors from which parameters can be
chosen. While this is advantageous for small powers (where this excludes unreliable low-
variance eigenvectors), this becomes less useful as the power increases and the classifier
concentrates upon only high-variance eigenvectors. When θ is dropped to its minimum
value, dimensions which are significantly less useful in classifying test-images may be
included; this effect is sufficiently extreme for the higher α classifiers to increase the
number of errors.

4.5 Feature Selection

One way of interpreting the classification functions derived by EBPC is by considering
the probability of inclusion of the features, in this case the eigenvectors. This is simply the
count of non-zero wi values across classifiers for different individuals and cross-validation
repetitions. This is shown in Figure 5 for both the equal-probability condition (α = 0),
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Figure 3: Effects of varying the parameter θ on classification accuracy of test and training
images on an equal-weight condition.

and the fourth-root eigenvalues (α = 0.25). In both cases the least sparse classifier was
used.

Note that while the equal-weighting condition produces a remarkably even spread
across the 518 features, with a slight tendency towards higher probabilities for later, lower
eigenvalue ones, the weighted case shows a pronounced tendency towards early features.
Some low-variance eigenvector have been included. Thus soft selection has been imple-
mented, with a bias away from unreliable parameters, which can still however be used,
where they are particularly important.

A second method of weighting the features was also investigated, using the eigen-
values of a Linear Discriminate Analysis of the images to weight the appearance model
eigenvectors. Although this did not change classification performance, this did move the
point of minimum errors to a power of unity.

5 Discussion and Conclusions

In this paper, a sparse SVM has been used for recognizing individuals based on orthogonal
features generated from an appearance model. One property of the appearance model is
the large number of candidate features (500+) that were generated from a relatively small
training set. Hence, the sparse SVM was used to select important features and a new,
novel algorithm for generating a complete set of sparse classifiers was proposed. By ex-
ploring all the optimal, sparse classifiers, insights could be gained into the stability of both
the feature selection and parameter estimation processes. One slightly surprising property
was the interaction between the estimated parameters, when new features were introduced
into the active set and data points dropped. This was surprising because the features were
constructed to be orthogonal, and it does illustrate how feature selection can be a complex
process. In addition, the paper also illustrated how soft priors can be incorporated into
the feature selection process and when the prior was a power transformation of the eigen-
values, it was shown to improve both the classifier’s generalization performance and the



0 0.5 1 1.5 2

40

50

60

70

80

90

100

110

120

130

140

Eigenvalue power

N
um

be
r 

of
 e

rr
or

s

Least sparse
Most sparse

Figure 4: Changes in classification errors with power transformation of the eigenvalues
for highest and lowest θ values giving no training errors.

stability of the selected features. While the latter is to be expected, the former property is
more interesting, as it allows for the incorporation of expert knowledge about the relative
importance of different features in a soft fashion, and this can improve the ”conditioning”
of the problem. This allows the integration of the appearance model and SVMs, as the
former are now supplying the latter with parameterized dimensions, rather than the usual
arbitrary basis.

This paper has concentrated on the description and application of the sparse EBPC
method. Future work will consider how best to represent the multi-class nature of the
face recognition problem, the extension of the above sparse method to non-linear kernels,
comparison with other sparse classification techniques and the use of other sets of priors.
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