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Abstract

We address the issue of forming a pre-attentive mechanism that can be used
to analyse surveillance sequences. We address the problem of spotting scene
change by performing temporal segmentation on long video sequences with
little colour information and observed content. This is typical in surveillance
sequences. Our approach: (1) employs sustained temporal change computed
for local neighbourhoods in the image frames; (2) defines a frame activity
similarity metric that accounts for local spatial and temporal displacement of
change; and (3) monitors the similarity over a wide period to detect changes
in emphasis that are then identified as scene breaks.

1 Introduction

As the number of surveillance deployments increases there becomes an urgent need to
provide rapid access to the visual content via browsing and retrieval applications. We
consider that a pre-attentive mechanism with no understanding of scene content is desir-
able for performing in real-time a number of critical tasks, including finding the ‘scene
breaks’ in the sequence (temporal segmentation) and for detecting the introduction of
alien objects to the scene (zero-motion detection). A computationally effective but also
reliable method is required for rapid deployment, as opposed to recognition based sys-
tems that require training. A pre-attentive method should require no knowledge about the
expected content or structure of the scene and can provide an effective pre-processing step
to both fully-automatic systems that reason about the content and semi-automatic systems
that provide assistance to a specialist users (eg: as in semi-automatic visual annotation).

We address the issue of performing temporal segmentation on surveillance sequences
for the purpose of decomposing the sequence into a set of small video segments each
considered to contain frames of similar content. Segment (or scene) breaks are found
where the holistic interpretation of the sequence changes. It is significant to point out that
many existing video segmentation and indexing systems exclusively target broadcasting
and media applications, assuming the accessibility of highly elaborative multi-media data
(synchronised audio, text and video) or well-structured scripts/story-line or manually la-
belled metadata. However, this is no longer valid in surveillance when the semantics of
the recordings are unknown.
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We acquired a number of surveillance sequences and from those we observed that
they contain little or no colour information. The colour distribution in Hue-Saturation
space is heavily centred at zero indicating that only grey-level information is available.
This is problematic for existing video indexing and search models as most rely upon the
capture of a high-quality feature space usually dominated by colour features. This defect
is due to the use of low-quality recording media in surveillance systems. The colours that
do exist are not sufficient for recognition or tracking tasks in contrast to the majority of
approaches (eg: [15, 9]). Due to the nature of surveillance very small activities can in fact
be rather important to the outcome but can be easily missed in detection.

An image can be analysed by performing a spatial decomposition to find object level
content. This has been found useful for performing retrieval of images that are required to
have a similar object level content [3]. In a sequence, tracking can be achieved by evolv-
ing blob level contents [9, 5], however these approaches require good quality features,
prior knowledge about the expected object-level content (faces, mammals) and consider-
able training. Models dependent upon spatial features are also rather vulnerable to global
changes in recording conditions (eg: erratic global illumination due to changes in cloud
coverage). Owing to the nature of surveillance the scene is almost completely uncon-
strained and the number and type of expected activities is unknown. As in surveillance
we are more interested in ‘what is happening’ in the scene rather than ‘what is present’
we prefer the use of temporal features to provide an initial scene analysis.

Temporal features are computed based upon the pixel level differences that can be
observed over time. In our case we are dependent entirely upon grey-level changes. In
[4] a number of motion energy receptive filters are used to capture motion at different
orientations and timescales for the purpose of indoor scene recognition. Unfortunately
the computation is expensive and the recognition process requires training using sets of
known scenes. In [2, 16] the temporal change is inexpensively estimated using the amount
of change that is observed and scene recognition models are trained. In our case we do not
wish to perform recognition as this implies that a limited number of scenes are known to
exist, rather we aim to identify those instances in the sequence where an unknown scene
change may have occurred. In non-surveillance video scene-change detection is done by
performing time constrained shot-grouping [7, 12, 8, 11]. Shots are found during a pre-
processing step using sharp or gradual colour feature change between frames. In our case
shots do not exist and so we must determine the scene-changes at frame level.

The rest of the paper is organised as follows: In Section 2 we describe our approach
to performing temporal segmentation of surveillance sequences using temporal change.
This involves computing the temporal change, providing a frame similarity metric and a
method for analysing the change over a period of time. In Section 3 we then describe our
experimental results. We conclude in Section 4.

2 Temporal Segmentation using Local Activity

2.1 Local Activity Representation

As surveillance sequences are long and the processing is required to be quick (for retro-
spect or real-time analysis) the temporal features are needed to be both computationally
inexpensive and reliable. Methods for computing motion such as spatio-temporal zero-
crossings [6] and Gabor based motion receptive fields [4] are not considered here to be



viable due to their cost. Instead we employ Pixel Change History [16], a derivative of
Motion-History Images [2], to inexpensively estimate the amount of activity occurring
using temporal change:

PCHα �β �x�y� t� �

�
min�PCH�x�y� t �1��α�255� D�x�y� t� � 1
max�PCH�x�y� t �1��β �0� otherwise

(1)

where α and β are the accumulation and decay factors and D�x�y� t� is a thresholded
frame difference function, �I�x�y� t��I�x�y� t�1��� Td , between two successive frames
each smoothed with a Gaussian filter. The filter is used to reduce the effect of noise and
blur. We use α � β � 50. We use a Td of 5 to capture change but to also allow a small
oscillation in pixel appearance. The PCH result is a value between �0�255� for each pixel
where a high value indicates that sustained change has taken place at that position. This
is an efficient scheme that provides a measure of current pixel activity and is robust to
global illumination changes.

We reduce the spatial resolution of the PCH space to simplify the size of the feature
space and to provide a coarser scene description. A similar approach proposed in [10]
used a coarse scene description to successfully identify classes of scene activities within
a constrained indoor scene. The image space is sub-divided into blocks of size 16�16.
A block activity measure is computed per block using the ratio-of-occupancy of pixels
exhibiting sustained change. We compute the Binary Cell Activity (BCA) for each frame:

BCA�x�y� t� �

�
s

∑
i�1

s

∑
j�1

PCH�xs�i�ys� j� t� � Tp

�
� Tc (2)

where s�16 is the spatial cell dimension, Tp is a threshold of pixel PCH used to determine
if a pixel is considered active, and Tc is a threshold on the number of active pixels used to
determine if the cell is active. We use Tp � 50 and Tc � 40. We found these thresholds
ensured that the block is marked active only if had considerable evidence of pixel activity.

We additionally compute the delay based asynchrony [10] to retain the time since the
last block activation:

ASYN�x�y� t� �

�
t� last�x�y� t� t� last�x�y� t�� Ta

Ta otherwise
(3)

where last�x�y� t� returns the last value of t at which the specified cell was active and Ta

is the largest delay permitted. We use Ta � 255. An illustrative frame and it’s computed
PCH, BCA and ASYN is shown in Figure 1.

Figure 1: An illustrative frame from the aircraft docking sequence (t � 540) with it’s
computed PCH, BCA and ASYN.



2.2 Frame Similarity Metric

The local activity representation BCA�ASYN captures action taking place at an instance
in time. We now define a frame activity similarity metric as a measure of the cost of local
activity change from one frame P to another Q over time. Distance metrics have been
widely employed in image and video retrieval for the purpose of performing ranking [13].
In our case we wish to use the metric for monitoring the change in frame appearance over
time for identifying discontinuities that can then be interpreted as scene breaks.

If we consider the BCA between two frames we can form three sets of cells: the set
Ma of matching active cells; the set Mi of matching inactive cells; and the set N of non-
matching cells. A frame similarity can be constructed that balances the positive evidence
Ma and Mi against the negative evidence N:

Similarity1�P�Q� �

�
sizeo f �Ma�

sizeo f �Ma�Mi�N�

�
(4)

where sizeo f returns the size of the set. We reformulate as:

Similarity2�P�Q� � exp

�
�

Negative�P�Q�

Positive�P�Q��1

�
(5)

where Negative1�P�Q� � sizeo f �N� and Positive�P�Q� � sizeo f �Ma� to ensure the result
is in the range �0�1� and to remove the effect of the unimportant cells Mi. A drawback
is that the similarity will be low during a single continuous flowing movement in the
sequence as different blocks become active at different times. This is as the similarity is
brutal in that it does not consider either the locality of mismatches or the history of block
activity. For example:

��� ��� ��� � � ��� ��� ��� � �

��� �	
 ��� �� � � ��� �	
 ��� �� � �

��� ��� ��� � ���� ��� ��� ��� � ����

where the numerals represent the delay since the last block activation (0 is active now)
and ‘-’ indicates a block that is not and has never been active. In the first case the activity
is only displaced by 1 position and hence the similarity score should be high (a spatial
displacement). In the second case the activity has recently disappeared and the similarity
should also be high (a temporal displacement).

To compensate we adjust our negative evidence estimation function to account for
the spatial locality and temporal delay of mis-matching cells. To estimate the amount
of spatial displacement we consider the 3�3 neighbourhood of cells. To estimate the
amount of temporal displacement we consider the delay since the last block activation.
The negative evidence is computed as a combination of both:

Negative2�P�Q� � ∑
�x�y��N

�
1�

Neigh�PorQ��x�y�

sizeo f �Neigh�

�
�

�
ASYN�PorQ��x�y�

Ta

�
(6)

where Neigh is the number of active blocks surrounding the x�y position in the frame,
sizeo f �Neigh� � 8 is the size of the neighbourhood, ASYN is the delay asynchrony and
Ta is the maximum delay permitted both defined in Equation 3. The choice of frame



�PorQ� is made using the frame in which the particular cell x�y is not active. The result
for each cell is a value between �0�1� where a low value indicates that the mis-match is ‘ex-
plained’ by spatio temporal factors. In the previous example the similarities �0�17�0�34�
are improved to �0�17�0�97� as the negative evidence is reduced from �2�1� to �1�75�0�04�

2.3 Temporal Segmentation

We now consider the question of performing an analysis of the sequence in order to per-
form temporal segmentation. Temporal segmentation requires the identification of those
instances in the sequence at which the emphasis of the content is considered to have
changed. In non-surveillance sequences sharp transitions are detected where the differ-
ence between two neighbouring frames exceeds a threshold. Gradual transitions are those
that occur over a number of frames (eg: a ‘wipe’ or ‘fade’) [1] and are detected where the
cumulative frame difference in a frame window exceeds a threshold. These methods are
known to accurately detect breaks where the sequence changes from one camera position
to another. This is not the case in our surveillance sequences which are taken from a
single fixed camera position.

Our approach is inspired by the scene detection work of [7] and [8]. Shots are de-
tected using the sharp/gradual method and are then grouped into scenes by computing the
coherence of the past shots with the future shots. Each shot transition is so evaluated and
those that have a low coherence are also identified as scene breaks. In our case we do not
have shots and so we attempt to compute the coherence between past and future frames
using a wide frame window:

Coherence�t� �
∑w�2

i�1 median
�
�

w�2
j�1Similarity�Ft�i�Ft� j�

�
w�2

(7)

where w is the frame window size being used, Fi is the frame at time i and Similarity is
a frame similarity function as defined in Section 2.2. The result is a value between �0�1�
that is high when there is similarity between the frames in the past �t�w�2� � � � � t�1� and
future �t�1� � � � � t�w�2�. A low result indicates a change in emphasis in the sequence. We
compute the coherence at each frame in the sequence and identify the scene breaks at the
minima in the result.

We automatically detect the minima at those points, t, where the coherence is the
lowest in a surrounding window as suggested in [14]. In those situations where two or
more points have the same lowest value the minima is retained at t that has the furthest
distance to the next minima. The sequence is segmented into the desired number of breaks
by choosing the minima that have the lowest score and are furthest from the neighbouring
minima.



Figure 2: An illustrative frame from each of the eight manually identified scenes.

3 Experiments

A number of surveillance sequences were acquired for experiments that observe aircraft
docking activities in a busy scene. One sequence was selected for manual analysis to
obtain a rough understanding of the ground truth. The sequence is roughly 1.5 hours of
footage sampled and digitised at 2Hz. The sequence consists of 11,000 frames each of
size 320�240 represented in RGB. This produces a coarse size of 20�15. Upon inspection
eight salient scenes were identified using human understanding:

frames 0-400 empty dock;
400-600 aircraft arrival;

600-2,700 passengers dis-embark and unloading;
2,700-5,700 plane re-stocked;
5,700-7,500 period of inactivity;
7,500-8,750 final loading;
8,750-9,500 engines examined; and

9,500-11,000 aircraft departure.

These manual scenes are illustrated in Figure 2. Some scenes are typified as containing a
number of localised activities with a similar purpose (eg: vehicles moving to unload the
aircraft), some contain small activities that occur over a long period and are semantically
important (eg: engines examined), and some are used to encapsulate long periods of
inactivity.

We performed automatic temporal segmentation on the first 2,000 frames using a
frame window of size w�100 and w�200 in the computation of coherence (Equation 7).
We use the frame similarity metric that explains spatial and temporal factors (Equations 5
and 6). Breaks were detected at the minimas as these are the points where the past is con-
sidered to have little correlation to the future (see Section 2.3). The coherence values and
the detected breaks are shown in Figure 3. Manually identified breaks exist at positions
400 and 600. Both results detect breaks close the manual breaks due to the low level of
frame coherence at this point. The difference in w makes little impact and so we prefer
the smaller value owing to the reduced computational cost.



Figure 3: The frame coherence and for the first 2,000 frames using (a) w�100 and (b)
w�200. The five automatic breaks that were detected are shown with vertical bars.

Figure 4: The positions the manual breaks in the 11,000 frame sequence: (a) the manual
breaks; (b) the even temporal breaks; (c) the frame-coherence breaks; and (d) the gradual
breaks.

mean variation
etb 154.3 69.1
fc 117.1 121.6
gb 132.4 91.4

Table 1: The mean and variance distance between the manual breaks and the automatically
detected breaks for the two methods.

Figure 5: The coherence and automatic breaks in Sequence 2.



We performed temporal segmentation using our frame-coherence (fc) method on the
entire sequence of 11,000 frames using a window size w�100. To compare our method
we introduced even temporal breaks (etb) at equidistant positions in the sequence. We also
computed gradual breaks (gb) at the maxima of cumulative frame change, a method often
used for identifying gradual transitions in traditional multimedia segmentation. In each
case we used the top twenty breaks. The positions of the automatically detected breaks
alongside the manual breaks are shown in Figure 4. We evaluated the correctness of the
breaks using the mean distance from the manual breaks to the nearest detected break. The
result shown in Table 1 indicates that the frame-coherence breaks are on average closest
to the manual breaks. Both the fc and gb methods outperform etb indicating that there is
some merit in performing temporal segmentation based upon frame content.

The frames and asynchrony representation (Equation 3) for the first three breaks de-
tected using w � 200 are shown in Figure 6. We show a number of surrounding frames
at positions �t�100� t�50� t�25� t� t�25� t�50� t�100� where t is the break position
(488�593�722�1525) to demonstrate the frame content at the detected breaks. Break 1
occurs upon the arrival of the aircraft. The position of the break is towards the middle
rather than the start of the activity as this point has the lowest coherence. However, the
coherence minima is very wide (see Figure 3) and so choosing the exact break position be-
comes difficult. Break 2 is accurately positioned where the sequence content alters from
aircraft arrival to aircraft unloading. Break 3 is positioned where the unloading activities
end and a number of smaller unrelated activities commence.

Figure 6: The frame and asynchrony representation at the first three automatically de-
tected breaks using the frame-coherence method with w�200.



As a final experiment we computed the frame coherence and automatic breaks for
the first 2,000 frames on a second sequence that contained the similar aircraft docking
scenario but with different global lighting characteristics. The result shown in Figure 5.
Upon inspection it was found these breaks were positioned similarly to those computed
on the first sequence.

4 Conclusions

We described a frame representation based upon temporal-change and a frame similar-
ity metric. In particular, in the similarity metric we ‘explain away’ the inconsistancies
between two frames using spatial and temporal factors. We then analyse the sequence
by computing the frame-coherence between the past and future at each position. Scene
breaks are identified at the minima of the coherence as they are considered to exist where
the patterns of local activity change considerably over time.

The approach is computationally undemanding, operates without the use of colour
information, requires no training and provides an effective scene change spotting mech-
anism which is essential for semantically based retrieval and browsing of surveillance
video. The next steps are to consider the computation of coherence using the activities
that are segmented from the sequence, to further consider the causality between represen-
tations, and to model the expected visual structure of temporal-change in order to perform
scene independent zero-motion detection.
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