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Abstract

Although graph structures have proved useful in high level vision for ob-
ject recognition and matching, they can prove computationally cumbersome
because of the need to establish reliable correspondences between nodes.
Hence, standard pattern recognition techniques can not be easily applied to
graphs since feature vectors and not easily contructed. To overcome this
problem, in this paper we turn to the spectral matrix. We show how the ele-
ments of this matrix can be used to construct symmetric polynomials that are
permutation invariants. The co-efficients of these polynomials can be used as
graph-features which can be encoded in a vectorial manner. We demonstrate
that these vectors can be embedded in a low dimensional space using locally
linear embedding, and that the embedding results in well defined graph clus-
ters.

1 Introduction

Graph structures have proved important in high level vision since they can be used to
represent structural and relational arrangements of objects in a scene. The key problem
in utilising graph representations lies in measuring their structural similarity. In general,
the nodes of a graph are not ordered or labelled, and the node correspondence problem
must be solved before structural similarity to be assessed. In other words, a mapping
must be found between the nodes of the graphs being compared. This is equivalent to
finding a permutation of the nodes. For noisy graphs (those which are subject to structural
differences) this problem is thought to be NP-hard. There are a number of ways in which
this problem may be tackled. Many authors have employed the concept of graph edit
distance. The idea here is to perform elementary editing operations on a graph, such as
edge or node insertion and deletion, to make pairs of graphs isomorphic. Each operation
has an associated ‘cost’, and the minimum total cost of the set of edit operations can be
used to gauge the similarity of the graphs. For example, Fu et al [5, 11] have computed
similarities using separate edit costs for relabeling, insertion and deletion on both nodes
and edges. A search is necessary to locate the set of operations which have minimal cost.
More recently, Bunke [2] has established a relationship between the minimum graph edit
distance and the size of the maximum common subgraph. Torsello and Hancock [1] have
exploited this relationship to cast the problem into a continuous optimisation framework.
Shapiro and Haralick [8] have exploited a similarity measure based on the number of
consistent structural relationships in pairs of graphs. Again a search is exploited to locate
the best correspondence mapping between the nodes.
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There are two main conclusions to draw from this brief review of the literature. Firstly,
the calculation of graph similarity requires the solution of the correspondence problem as
a prerequisite. This problem is typically NP-hard and therefore computationally expen-
sive. Secondly, there is no clear consensus on how to compute the similarity of graphs.
Hence, graphs can not be manipulated as easily as pattern vectors, where the order and
identity of components features is fixed and known, and the computation of similarity
typically relies on a simple inner product between the vectors. In fact the non-vectorial
nature of graphs has meant that pattern analysis tasks such as clustering, the analysis
of variance and dimensionality reduction can not be applied to graphs. This in turn has
meant that machine learning in the graph-domain has proved to be an elusive problem.

In this paper we investigate whether it is possible to construct pattern-vectors for
graphs in a manner which does not require the solution of the correspondence problem
and which allows similarity can be easily assessed. The adopted approach is based on
spectral graph theory, which is a branch of mathematics that. is concerned with character-
ising the structural properties of graphs using the eigenvectors of the adjacency matrix or
the closely related Laplacian matrix (the degree matrix minus the adjacency matrix) [3].
One of the well known successes of spectral graph theory in computer vision is the use
of eigenvector methods for grouping via pairwise clustering. Examples include Shi and
Malik’s [9] iterative normalised cut method which uses the Fiedler (i.e. second) eigenvec-
tor for image segmentation and Sarkar and Boyer’s use of the leading eigenvector of the
weighted adjacency matrix [6] for line-grouping. Graph spectral methods have also been
used to correspondence analysis. For instance, Scott and Longuet-Higgins[7] have used
the eigenvectors of a point-affinity matrix to perform alignment and correspondences.
Umeyama[12] has developed a method for finding the permutation matrix which best
matches pairs of weighted graphs, using a singular value decomposition of the adjacency
matrices.

Although graph-spectral methods have proved effective in computer vision, the ex-
isting methods have not made full use of the available spectral representation. In other
words, most of the methods described above are based on the use of a single eigenvector.
In this paper, on the other hand, we describe a method for constructing spectral features
which are permutation invariants. To construct these invariants we use symmetric poly-
nomials. The arguements of the polynomials are the elements of the spectral matrix. We
use the co-efficients of the symmetric polynmials to construct graph pattern-vectors. With
the vectors to hand, we explore how they may be used to construct pattern spaces for sets
of graphs. We explore two different approaches. The first of these is to apply principal
components analysis to the covariance matrix for the vectors. The second approach is to
apply locally linear embedding to the vectors. This is a variant of PCA that modifies the
distortion measure using a nearest neighbour criterion. We demonstrate that this latter
method gives the best graph-clusters.

2 Spectral graph representation

Consider the undirected graphG = (V ,E ) with node-setV = {v1,v2, . . . ,vn} and edge-
setE = {e0,e1, . . . ,em} ⊂ V ×V . The adjacency matrixC for the graphG is then×n
symmetric matrix with elements

Cab =
{

1 if (va,vb) ∈ E
0 otherwise



In general the task of comparing two such graphsG1 andG2 involves finding a corre-
spondence mapping between the nodes of the two graphs,f : V1∪ φ ↔ V1∪ φ where
‘φ ’ represents a null match or dummy node which may be used the account for struc-
tural differences between the two graphs. The correspondence mapping problem may be
posed as that of finding the permutation of nodes in the graphG2 which places them in
the same order as those in the graphG1. This permutation can be applied to the adjacency
matrix of graphG2 so that it may be compared with that for graphG1. If the graphsG1
andG2 are isomorphic then the permutation matrixP satisfies the conditionC1 = PC2PT .
When the graphs are dissimilar, then the optimal permutation matrix can be found by
minimising the difference betweenC1 andPC2PT . Graph spectral techniques have been
used to solve this problem. For instancem Umeyama[12] has shown how singular value
decomposition can be used to find the permutation matrix which satisfies the condition
P∗ = argminP ||C1−PC2PT ||, i.e. which minimises the Froebenius norm. In some ap-
plications, especially in structural chemistry, eigenvalues have also been used to compare
the structural similarity of different graphs. However, although the eigenvalue spectrum
is a permutation invariant, it represents only a fraction of the information residing in the
eigensystem of the adjacency matrix.

2.1 The graph spectral matrix

We commence our discussion of graph-spectra by considering how to construct the ad-
jacency or connection matrix. The graphs considered here have no self-connections and
henceCii = 0. However, if the diagoanl elements are set to zero in this way then the spec-
tral decomposition of the adjacency matrix will have many negative eigenvalues. This
problem is generally solved by setting the diagonal element equal to the degree of the
corresponding node, i.e.Cii = ∑ j 6=i Ci j . The matrixC is then positive definite, and the
eigenvalues are hance all either positive or zero.

The spectral matrix for a graph is found by performing an eigenvector decomposition
of the the adjacency matrixC, i.e. C = ∑n

i=1 λieie
T
i whereλi is the ith eigenvalue and

ei is the corresponding eigenvector of the symmetric matrixC. The eigenvectors are
normalized so that they have unit length i.e.eT

i ei = 1. With the eigenvectors to hand
the spectral matrix is given byΦ = (

√
λ1eT

1 ,
√

λ2eT
2 , ....,

√
λneT

n )T . The matrixΦ is a
complete representation of the graph in the sense that, providing there are no negative
eigenvalues, we can reconstruct the original adjacency matrix using the equationC =
ΦTΦ.

2.2 Uniqueness of the spectral matrix

Theorem 1 Matrix Φ is a unique representation ofC iff all n eigenvalues are distinct.

This follows directly from the fact that there aren distinct eigenvectors when the eigen-
values are all distinct. When an eigenvalue is repeated, there exists a subspace spanned
by the eigenvectors of the degenerate eigenvalues in which all vectors are also eigenvec-
tors ofC. In other words, if there are two equal eigenvalues,λa = λb, thene′ is also an
eigenvector ofC, where

e′ = αea +βeb, α2 +β 2 = 1

The conditionα2 + β 2 = 1 maintains the normalization of the eigenvector. In this case
there is continuum of representations.



If the eigenvalues are distinct, then the graph is such that every automorphism, ex-
cepting the identity, is of order 2[4]. In this case, the isomorphism problem is known to
be easy. In the following, we will refer to such graphs assimple.

3 Node permutations and invariants

The topology of a graph is invariant under permutations of the node labels. However, the
adjacency matrix is modified by the permutation since the rows and columns are indexed
by the node-order. Hence, if we relabel the nodes, the adjacency matrix undergoes a per-
mutation of both rows and columns. Let the matrixP be the permutation matrix represent-
ing the change in node order. The permuuted adjacency matrix is given byC′ = PCPT .
There is hence a family of adjacency matrices which can be transformed into one-another
using a permutation matrix. The spectral matrix is also modified by permutations.

Theorem 2 Matrix Φ is unique up to a permutation of the columns for simple graphs.

Let C be the adjacency matrix of a graphG and letC′ = PCPT be the adjacency matrix
obtained by the permutationP. Further, lete be a normalised eigenvector ofC with
associated eigenvalueλ , and lete′ = Pe. With these ingredients, we have that

C′e′ = PCPTPe= PCe= λe′ (1)

Hence,e′ is an eigenvector ofC′ with associated eigenvalueλ . As a result, we can write
Φ′ = ΦPT . Direct comparison of the spectral matrices for different graphs is hence not
possible because of the unknown permutation.

The eigenvalues of the adjacency matrix have been used as a compact spectral rep-
resentation for comparing graphs. The eigenvalues can be recovered from the spectral
matrix using the identity

λi = ∑
j

Φ2
i j

The expression∑ j Φ2
i j is infact asymmetric polynomialin the components of eigenvector

ei . A symmetric polynomial is invariant under permutation of the variable indicies.
The eigenvalue is one example of an infinite family of symmetric polynomials which

can be defined on the components of the eigenvectors, i.e. the elements of the spectral
matric. However, there is a special set of these polynomials, referred to as theelementary
symmetric polynomials(S ) that form a basis set for symmetric polynomials. In other
words, any symmetric polynomial can itself be expressed as a polynomial function of the
elementary symmetric polynomials belonging to the setS .

We therefore turn our attention to the set of symmetric polynomials. For a set of
variables{x1,x2 . . .xn} they can be defined as

S1(x1, . . .xn) =
n

∑
i=1

xi Sr(x1, . . .xn) = ∑
i1<i2<...<ir

xi1
xi2

. . .xir
Sn(x1, . . .xn) =

n

∏
i=1

xi (2)

The polynomial functions

P1(x1, . . .xn) =
n

∑
i=1

xi Pn(x1, . . .xn) =
n

∑
i=1

xn
i (3)



also form a basis set over the set of symmetric polynomials. As a consequence, any func-
tion which is invariant to permutation of the variable indicies and that can be expanded as
a Taylor series, can be expressed in terms of one of these sets of polynomials.

The two sets of polynomials are related to one another by the Newton-Girard formula:

Sr =
(−1)r+1

r

r

∑
k=1

(−1)k+rPkSr−k (4)

In this paper, we intend to use the polynomials to construct invariants from the elements
of the spectral matrix, The elementary simple polynomials can hence provide spectral
“features” which are invariant under node permutations of the nodes in a graph.

4 Feature distributions

While the elementary symmetric polynomials provide spectral features which are invari-
ant to permutations, they are not suitable as a representation for gauging the difference
between graphs. The distribution ofSr for larger is highly non-Gaussian with a dominant
tail because of the product terms appearing in the higher order polynomials. In order to
make the distribution more tractable, it is convenient to take logs. Furthermore, the com-
ponents ofΦ may be zero, which will lead to loss of information for certain members of
the setS . As an example, if any component of~ei is zero, thenSn = 0. If we wish to take
logs, the conditionSr > 0 ∀r must hold. We therefore perform a component transform
Φi j → ε + |Φi j |. It is convenient to chooseε so that the mean-value of the components is
1. Hence, we construct the following matrix from the symmetric polynomials

Fi j = lnSj(Φi,1,Φi,2, . . . ,Φi,n) (5)

where1≤ i ≤ n,1≤ j ≤ n. The columns of this matrix are stacked to form a long-vector
B.

5 Pattern Spaces

We would like to explore how the feature-vectors extracted from the symmetric poly-
nomoals can be used to construct pattern-spaces for sets of graphs. We explore two appo-
raches. The first of these in principal components analysis. The second method is locally
linear embedding [10].

5.1 Principal Components Analysis

Suppose that we have a set of graphsG1, G∈,...,GM with associated long-vectors of spec-
tral featuresB1, B2,....., BM. The N different image vectors are arranged in order as
the columns of the matrixS=

[
B1|B2| . . . |Bi | . . . |BN

]
. For the set of spectral feature

vectors, the covariance matrix isΣ = SST and the eigendecomposition of the matrix is
Σ = ∑N

i=1 λi~ui~u
T
i , whereλi are the eigenvalues and~ui are the corresponding eigenvectors

of Σ. We project the spectral feature vectors onto the space spanned by the leading d
eigenvectors. LetT = (~u1|~u2| . . . |~ud)

T be the matrix with the leading eigenvectors ofΣ as
rows. The projection of the feature vectorB j onto this eigenspace iszj = TBj , Hence the
graphG j is represented by a d-component vector~zj in the eigenspace.



5.2 Locally Linear Embedding

The second dimension reduction method that we use is locally linear embedding (LLE)
[10]. For each pair of graphsGi andG j , we compute the squared Euclidean distance

d2
i, j = (Bi −B j)

T(Bi −B j). For the graphBi we find the index setKi of the set of graphs
which are the K-nearest neighbours according to the Euclidean distance. Using the K-
nearest neighbours, we construct aM×M weight matrixW whose elements are defined
as follows

Wi, j =
{

1
K if j ∈ Ki
0 otherwise

(6)

The distortion of the data is guaged by the measure

E(W) =
M

∑
i=1

M

∑
j=1

(Bi −WBj)
T(Bi −WBj) (7)

The aim in locally linear embedding is to find a projection of the vectorsBi into a d-
dimensional subspace that minimises the distortion measure in this subspace. This pro-
jection may be found from the eigenvectors of the matrix

D = (I −W)T(I −W) (8)

The eigenvector~u1 corresponding to the smallest eigenvalue ofM is the “all-ones” vector,
and conveys no information. The eigenvectors~u2,~u3,....~ud+1 corresponding to the nextd
eigenvalues of increasing size are the basis vectors of the required projection. Following
the approach adopted with PCA we construct the projection matrixT = (~u2|~u3| . . . |~ud+1)

T

to compute the d-vectorszj = TBj for the purposes of visualisation.

6 Experiments

There are two aspects to the experimental evaluation of the techniques reported in this
paper. We commence with a study on synthetic data aimed at evaluating the ability of
the spectral features to distinguish between graphs under controlled structural error. The
second part the study focusses on real world data and assesses whether the spectral feature
vectors can be embedded in a pattern space that reveals cluster-structure.

6.1 Synthetic Data

We commence by examining the ability of the spectral feature set and distance measure
to separate both structurally related and unrelated graphs. This study utilises random
graphs which consist of 30 nodes and 140 edges. The edges are generated by connecting
random pairs of nodes. Structurally related graphs are generated from an original graph
by an edit operation of either deleting an edge or inserting a new random edge. Each
of these operations is assigned a cost 1, and therefore a graph with a deleted edge has
an edit distance 1 to the original. In the left-hand panel of Figure 1 we have plotted the
distance(ε) distributions of an edited graph of edit distance 1 and the set of random graphs
with respect to a reference graph. The edited graph is derived from the reference graph
by the removal of a random edge. The results in table 1 demonstrate the performance
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Figure 1: Distributions of distance to edited (left) and discriminating power of individual
eigenvectors (right).

Edit distance 1 2 3 4 5
Confusion prob. 0.015 0.047 0.098 0.144 0.179

Edit distance 6 7 8 9 10
Confusion prob. 0.209 0.234 0.262 0.283 0.289

Table 1: Performance of feature set for edited graphs

under different levels of corruption. The method works well for very similar graphs, but
degrades at higher levels of corruption.

In the right hand panel of Figure 1 we illustrate the relative ability of each eigenvector
to discriminate between the random and 1-edit classes of graphs. Here only one eigen-
vector is used in the distance measure. Eigenvector-n denotes the eigenvector with thenth

largest eigenvalue. The plot demonstrates that the leading and the last few eigenvectors
are the most important in defining the structure of the graph.

At first sight this suggests that only a few of the eigenvectors need be used to charac-
terise the graph. However, as Table 2 reveals this is only the case for small edit distances.
As the edit distance increases, then more of the eigenvectors become important.

To take this study one step further, we create three clusters of graphs from three ref-
erence graphs by perturbing them by edit operations. The distances between these graphs
are then used to embed the graphs in a two dimensional space using multi-dimensional
scaling. The procedure is as follows. Three seed graphs are generated at random. These
seed graphs are used to generate samples by deleting an edge at random from the graph.
The distance matrix is then constructed, which has elementsdi j , the distance between

Edit distance
Eigenvectors 1 2 3 4

First only 0.003 0.100 0.144 0.211
Start 5 and end 5 0.043 0.088 0.132 0.171
All 0.015 0.047 0.098 0.144

Table 2: Confusion probabilities of different eigenvector sets and edit distances
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Figure 3: Example graphs from 3 different model sets; left: ‘CMU’, centre: ‘model’, right
‘chalet’

graphsi and j. Finally, the MDS technique is used to visualise the distribution of graphs
in a 2 dimensional space. The results are shown in Figure 2. The graphs form good
clusters and are well separated from one another.

6.2 Real World Data

We experiment with three sequences of 2D views of model houses under gradually vary-
ing viewpoint. From each image in each view sequence, we extract corner features. We
use the extracted corner points to construct Delaunay graphs (examples are shown in Fig-
ure 3). Ideally, we we expect the graphs belonging to the same sequence to be close in
pattern-space, while the different sequences should be well separated.

In the top row Figure 4 we show the results of applying PCA (left) and LLE (right) to
the spectral feature vectors. In the plots, the images in the three sequences are indicated
by the numbers from 1-10, from 11-20 and 21-30. The main feature to note from the two
plots is that LLE produces an embedding in which the three image sequences are better
clustered than with PCA. However, in the case of PCA, the different graphs describe a
smooth trajectory, and hence the method may prove useful for view interpolation. In the
bottom row, we show the results of applying PCA (left) and LLE (right) to a conventional
spectral representation. The simple representation chosen is the vector of eigenvalues. In
both cases the cluster structure appears pooer than when the spectral feature-vectors are
used.



To investigate the behaviour of LLE when used in conjunction with the spectral feature-
vectors, in Figure 5 we show the effect of varying some of the parameters of the method.
In the top row of the figure, we show the effect of varying the number of nearest neigh-
bours. In the bottom row, we show the effect of varying the number of components of the
spectral feature vector. The main features to note from these plots are that the best clus-
ters emerge when k=4, and that little improvement is obtained once 30% of the available
components of the spectral feature vector are used.
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Figure 4: Comparing PCA and LLE for the spectral feature vectors and the eigenvalue
spectrum.
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Figure 5: The effects of k-nearest neighbours and feature-vector length on LLE.

7 Conclusions

In this paper we have shown how graphs can be converted into pattern vectors by utilising
the spectral decomposition and basis sets of symmetric polynomials. We have shown that



these feature vectors are complete, unique and continuous.
We then investigate how to embed the vectors in a pattern space, suitable for clustering

the graphs. Here we explore two alternatives. The first of these is PCA. The second
is locally linear embedding. This is a variant of PCA which uses a nearest neighbour
criterion to modify the computation of distortion. Results show that LLE gives the best
clusters.
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