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Abstract

Accurate and reliable tracking of the 3D position of human heads is a con-
tinuing research problem in computer vision. This paper addresses the spe-
cific problem of model-based tracking with a generic deformable 3D head
model. Following the work of Vetter and Blanz, a collection of head mod-
els is obtained from a 3D scanner, registered and parameterized to give a
generic head model which is linearly parameterized by a small number of
parameters. This is the 3D analogue of Cootes and Taylor’s active appear-
ance models. We cast tracking as a parameter estimation problem, and note
that many existing solutions to the problem—such as CONDENSATION and
Kalman filtering—are analogous to nonlinear optimization strategies in nu-
merical analysis. We show how careful analysis of the error function, pa-
rameterization of the model pose parameters, and choice of optimizer allows
us to robustly track 3D head pose in digital video camera footage of quickly
moving heads.

1 Introduction

The detection and tracking of human faces within a video sequence is a common ob-
jective in computer vision. Accurate and reliable head tracking has applications in ani-
mation, in user interface design, for biometrics, and as a measurement modality for the
physiological sciences. Of current techniques, the most successful at recovering the 3D
position are model-based—the tracking problem is cast as one of estimating the param-
eters of a deformable model which best fits the input video sequence. In this paper, we
develop a morphable face model which encodes both the 3D shape and the 2D texture
of a range of faces, and show how accurate and robust tracking can be achieved by com-
bining an illumination-invariant image comparison metric with well-engineered nonlinear
optimization techniques.

The morphable model we use is similar in nature to active appearance models [9], as
specialized to 3D face models by Vetter and Blanz [24]. This model parameterizes full
texture mapped 3D models of human faces, the parameterization learned from a collec-
tion of 3D scans of real faces. By performing an offline registration process on a set of
3D scanned faces we obtain a set of basis models and texture maps which can be linearly
blended to produce new models not in the original set. In contrast to 2 1

2 D models, for
example coupled [8, 5], or view-based [21] models, these are full 3D models which allow
3D manipulations such as relighting, collision detection, and change of viewpoint. Sec-
tion 3 describes how we acquire these models. To the best of the authors’ knowledge, this
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is the first replication of the Vetter and Blanz results, and the exposition of the techniques
we have employed in order to do so is one contribution of this paper.

The second contribution is in the use of the model to track the 3D position and orien-
tation of heads in video. We define tracking as the problem of determining the model pa-
rameters (both 3D pose and the parameters of the linear combination of basis faces) which
best describe each image of a video sequence. By using mutual information [25, 15] as the
similarity metric which compares the predicted and imaged face, robustness to changes
in lighting and colour are immediately achieved. We experimentally compare mutual
information as a metric to simple comparison of pixel difference, and to Roche’s corre-
lation ratio [20]. Finally, the use of a general-purpose nonlinear optimizer in preference
to gradient-descent or random search strategies provides for robust tracking even with
significant movement of the head from frame to frame.

We compare several nonlinear optimization strategies and similarity metrics, and demon-
strate robust head tracking on video sequences of two subjects.

2 Background

Beymer, Shashua and Poggio were among the first develop a system for the alignment
and synthesis of 2D images of faces [3], later being extended by Jones and Poggio to the
matching of faces as well as other classes of objects such as cars [18]—more recently
Ezzat, Geiger, and Poggio used a variation on this technique to provide generation of
realistic ‘newsreader’ type footage, synchronized with audio [13]. Cootes et al’s active
shape models [10] are the basis for many of these techniques, and the recent development
of ‘coupled-view’ active appearance models [8] allows “2 1

2 D” modelling of heads using
correlated 2D views. As an example of the application of this technology, Devin and Hogg
combine an Active Appearance Model with audio recognition to create an ‘interactive
talking head’ [12]. Another example of fully 3D face modelling is the popular CANDIDE
family of parameterized meshes. Much matching related work has been carried out using
these systems, with Ahlberg and Forchheimer providing a recent example [1].

Model-based tracking—the problem of determining the parameters of some model
which best “predict” a sequence of observations such as a video sequence—has been
a topic of perennial interest throughout computer vision. An incomplete selection of
examples includes the tracking of vehicles [14] and the human body [17, 23, 16]. In this
paper, we use a texture-mapped 3D model as the data representation, so our “predictions”
are synthetic 2D renderings of the head, rendered using desktop OpenGL hardware. These
are compared to the input video via an similarity metric which measures the similarity
between the rendered and target images. Simple metrics such as the sum of pixel-by-
pixel intensity differences used by Vetter and Blanz [24] are very sensitive to differences
in lighting between the synthetic rendering and the target scene, so a more robust measure
is required. Viola and Wells first introduced the mutual information metric with the aim of
aligning similar images, including obtaining the pose of a human head in an image [25]—
this was then extended to full multi-modal 2D image registration [26]. Gilles provides an
excellent technical report detailing the implementation of mutual information [15]. With
the success of mutual information came much analysis of its performance and potential
problems—the “correlation ratio” suggested by Roche et al [20] takes advantage of spatial
information in the intensity space of the images being compared to provide favourable



behaviour on multi-modal data sets.
Much work has been conducted by the computer vision community on face tracking,

with emphasis gradually moving from 2D matching approaches to full 3D model based
systems. Schödl and Haro [22] provide an early example of the use of a rigid, texture
mapped model. DeCarlo and Metaxas [11] were among the first to apply a deformable 3D
model based on anthropometric data, extracting shape and motion via optical flow. Other
authors have used coarse head models such as cylinders [7, 6] or superquadrics [28].

The tracking strategy in this paper is an explicit nonlinear minimization of the error
metric over the model parameters. This is a natural generalization of “predictor-corrector”
strategies such as the extended Kalman filter [23] or CONDENSATION [17]. By choosing
explicit minimization strategies which have been well honed by the numerical analysis
community, we benefit from wide convergence and robust operation of standard numer-
ical algorithms [19]. In this paper, the multi-dimensional function we wish to optimize
is not easily differentiated analytically, so derivative-free optimizers such as the down-
hill simplex method introduced by Nelder and Mead, and Powell’s direction set method
will be used. Such techniques have been employed previously for tracking [27] but their
equivalence to more traditional tracking methodologies is rarely emphasised, and the use
of algorithms more sophisticated than steepest descent is rare.

3 Building the morphable model

The 3D model we use is a triangulated mesh, as is widely used in computer graph-
ics and accelerated in modern graphics hardware. The model is defined by a collec-
tion of F 3D vertices {X0 . . .XF−1}, and a single 2D texture image T (i, j) of N2 RGB
pixels. Each vertex Xi has a corresponding 2D texture coordinate Ui. The 3D trian-
gles are defined as triples of vertex indices, and all models have the same triangula-
tion topology, although different models have different vertices and texture maps. A
3D model is represented as a point in a vector space by simply concatenating the ver-
tices, their texture coordinates, and the pixels of the texture map into a long vector de-
noted E = [X0 . . .XF−1,U0 . . .UF−1,T (0,0) . . .T (N,N)]. For a typical model, F ≈ 5000,
N = 512, so the dimensionality of E, at 5F +3N2, is of the order of 106. We define a mor-
phable model as a linear combination of basis models E0...EB, with model coefficients
α0..B, given by

E(α0, ..,αB) =
B

∑
q=0

αqEq where
B

∑
q=0

αq = 1 (1)

Clearly, for this linear combination to produce sensible novel faces, the triangulations
of the basis models must correspond. This means that a vertex with a given index must
always represent the same facial feature, for example the tip of the nose. In practice,
models scanned from real-world subjects (such as the output from a cylindrical Cyberware
head scanner) are supplied with an arbitrary triangulation which varies from model to
model, making registration of the models essential.

3.1 Registration of raw models

The input to model construction is a set of five Cyberware scanned 3D head models,
obtained from the Max-Planck-Institut, as used by Vetter and Blanz [4, 24]. These are



supplied as triangulated meshes with single texture maps, and are in roughly the same
3D coordinate systems, but with vertices which are not in correspondence. To find this
correspondence, we take advantage of the fact that each 3D vertex has a corresponding
2D texture map coordinate. To produce a set of vertices which are in correspondence, we
first place the texture maps in correspondence, and then define a new 2D triangulation in
texture coordinates. For each vertex Ui of this 2D triangulation, its 3D coordinates Xi can
be found by interpolation of the original 3D model, as discussed below.

To place the texture maps in correspondence, one model is chosen as the reference.
The texture map of each other model is then warped so that it is in correspondence with
that of the reference model. While previous work [24] achieved such correspondence
using a modified optical flow algorithm, our experience has been that such techniques
can be unreliable, and require significant manual optimization to produce useful results.
Instead, we formally require manual input: a set of 30 feature points is defined on the
human face, and these points manually marked on each input texture map. This allows
for consistency across a variety of faces and is easily done for each scanned face. A 2D
warp using radial basis function interpolation [2] between these control points is then used
to bring each texture map into alignment with the reference texture map.

With all the texture maps in correspondence, a new triangulation of the 3D vertices is
defined by selecting F points (2D) on the reference texture map and computing the Delau-
nay triangulation. This triangulation is defined just once, so can be optimized manually
if required. The final step is to generate 3D vertices for each of these 2D points. The 3D
coordinates corresponding to each 2D point can be found by inverse-warping the texture
coordinates into the texture map of the original model. Each point on the original texture
map is associated with a 3D point on a triangle of the original model, so its 3D position
can be easily determined.

Combining the above steps gives a set of texture-mapped 3D models which are in
vertex-for-vertex correspondence. This allows a large range of faces to be generated via
equation 1. The next step is to determine the parameters of this generic model which best
match specific examples which are observed in new 2D images.

4 Using the model for tracking

The task of tracking is to take input video footage of a moving face, and to determine,
for each frame of the video, the model parameters which best match the face’s position
and shape in that video frame. Here the degrees of freedom are the 3D position and
orientation of the head, the five model shape parameters α0, . . . ,αB, and the focal length
of the camera.

Our aim is to construct an off-line tracking system which is automated except for
some manually defined starting conditions. The tracking system should work on ‘real-
life’ footage, such as the first two sequences shown in figure 2. Here the sequences were
captured at normal PAL resolution using a digital camcorder, having various uncalibrated
lighting sources, including fluorescent and natural light, and a complex background set-
ting.

The general tracking framework is to maximize the similarity between a rendered
model image and the target video. The rendering process takes a vector of model param-
eters, denoted S, which encodes all the degrees of freedom of the model and produces a



rendered image R(S). The key to successful tracking is then to define a similarity function
ε(R, I) which measures the similarity between the rendered image R and the target video
image I. Several choices of ε are possible, and these are now discussed. In the following,
all images are assumed to be grayscale luminance images for ease of exposition.

4.1 Image similarity metrics

The most straightforward metric is pixel difference (PD), defined simply as the summed
difference in per-pixel luminance, defined as

PD(R, I) = κ − ∑
x∈R2

(I(x)−R(x))2

where κ is a large positive constant. This metric, as used in [24], is high when the images
are similar, and low otherwise. However, it is extremely sensitive to lighting variation—
two renderings of the same face under different lighting conditions can have very different
luminances at any given pixel.

Mutual information (MI) is more resistant to lighting changes, and is calculated in
terms of individual and joint entropy between two images and as such is an information-
theoretic approach. The entropy of a probability distribution P(x), where x ∈ R

d , is
computed from a discrete histogram. If the histogram bins are {h(xi)}Nd

i=1, the entropy
is defined as E(h) = −∑i h(xi) logh(xi). To compare images R and I, we compute the
1D histograms hR and hI for each image and the 2D histogram hR,I of pixels from the
two-channel image obtained by superimposing R and I. Then the mutual information [15]
is

MI(R, I) = E(hR)+E(hI)−E(hR,I) (2)

Correlation ratio (CR), introduced by Roche et al [20], works on the basis that a
functional relationship exists between luminance values in the two images so that I =
Φ(R) for some unknown scalar function Φ. Consider again the comparison of two images
R and I. If the images are correctly registered, we expect each different intensity in R
to map to a small cluster of intensities in I. CR works by first finding the function Φ∗
which best fits I to R, then evaluates the quality of the fitting. For brevity we omit a full
derivation (discussed in detail in [20]), and simply state the definition:

CR(I|R) = 1− Var(I −Φ∗(R))
Var(I)

(3)

where Var(K) denotes the variance of an image K.

4.1.1 Comparison of similarity metrics

The success of our tracking strategy depends on choosing an image similarity metric
which is high when the model parameters, S, are correct, independent of lighting changes.
It is also necessary that when the model parameters are slightly different from the correct
value, the metric should degrade gracefully, reducing slowly for larger deviations from
the true position. Figure 1 compares the three metrics on a synthetic test. In this test,
a face is rendered at the identity set of model parameters to make the “target” image I.
Then the two elements of the model parameter vector S corresponding to X and Y rotation
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Figure 1: Metric behaviour under different lighting conditions (Left to right) Plots of
Pixel Difference, Mutual Information and Correlation Radio metric’s behaviour, compar-
ing an identity image of the model versus renderings of the model with varying rotation
about the X and Y axis. The top row is under ‘correct’ lighting conditions, the bottom
with ‘incorrect’. Under correct lighting, all perform well. Under incorrect lighting, only
MI falls off uniformly as the rotation increases.

(nodding and shaking of the head) are varied systematically. For each value of Rx and Ry,
a rendered image R(S) is computed and the value ε(R, I) is computed for each of the three
metrics. Only MI has the desired properties of a unique global maximum and graceful
decay with increasing deviation from the true position under general lighting conditions.

4.2 Tracking as nonlinear optimization

Tracking is the problem of determining, for each new frame of a sequence, the set of
model parameters which best describes the new frame. Tracking assumes that the esti-
mate of model parameters in the last frame can be used to predict the model position in
the current frame, and that this prediction can be corrected by minimizing an error crite-
rion which measures the deviation between the predicted model position and the observed
one. With minimization of error replaced by maximisation of a similarity function, this is
a similar problem to the goal of nonlinear optimization: to maximise a multidimensional
function, f (S), given an initial starting position S0. This is an enormous research field,
and we refer the reader to [19] for an accessible introduction. In this work we restrict
our attention to optimization strategies which do not require the computation of function
derivatives, as the similarity metrics we optimize do not permit analytic derivatives to
be computed. Of the many methods available, Powell’s conjugate direction method and
the Nelder-Mead simplex method (sometimes called “Amoeba”) are powerful, well un-
derstood techniques. On functions with long narrow “valleys” in parameter space, they
require fewer function evaluations in general than gradient descent, even when derivatives



are available.

5 Implementation

The tracking system can now be summarized. At each new video frame, I, we have an
initial estimate of the face position, parameterized by a vector of parameters S0. Defining
the objective function f (S) as the similarity between a rendered image R(S) and I, we
nonlinearly optimize f over the model parameters S. The optimal value of S is then
used as the initial estimate for the next frame. The next section shows that this is a very
successful strategy on long, fast-moving video sequences. Several additional details of
the system were important to its success, and these are described here.

Texture extraction: Although the linear combination as specified above (eq 1) blends
both the 3D shape and the 2D texture map of each basis model, for the purposes of this
work we use a fixed texture map mapped onto the shape created via linear combination of
E(α0, ..,αB). The fixed texture map is acquired from three reference images of the person,
by first manually positioning (i.e: rotating, translating and scaling) the 3D model to align
with each image, and then backprojecting from the reference images onto the 3D model.
Noting each triangular face of the 3D model has a corresponding 2D triangle in the texture
map, a mapping can be constructed between the face pixels in each reference image and
the pixels in the texture map, using the position of the image projected 3D triangles of the
aligned mesh. Thus, each texture map pixel is simply a blend of the pixel colours from
each reference image in which the projected position of the texture map pixel is visible.

Parameterization: The explicit parameters being optimised by our tracking system
are as follows: 3 for translation, 4 rotational (a quaternion so as to avoid gimbal lock), 5
model parameters α0, . . . ,α4, and a parameter to match the view angle of the renderer to
that of the capture camera. This parameter is multiplied by the translation Z in order to
decouple view angle and zoom, which creates narrow valleys in the error surface.

Narrow valleys also result if the model origin is placed unwisely. We improved per-
formance by scaling the Z translational parameter, and moving the centre of the model
such that the rotation was about the nose rather than the centre of mass.

Background modelling: The morphable model itself can only model the area of the
input images containing face, and so during non-linear optimisation we draw a back-
ground image behind the rendering of the morphable model, so that the rendered images
R more closely resemble the target image I. This background frame can be easily ac-
quired by having the subject move out of the view of the camera. Note that background
subtraction is not a good solution as it will tend to confuse the rendering both inside and
outside the head area.

6 Experiments

Four sequences of head motion were captured and processed, all from real-life subjects
but two under highly controlled conditions (bottom row, figure 2 ). Each sequence began
with a fronto-parallel view and so, after defining poses for left, right and first frames,
texture maps could be extracted and the sequence run though the various combinations of
image metrics and optimizers using the texture mapped model.



Figure 2: Example frames from successful tracks The morphable model is rendered
overlaid on the target frame using the pose and model output from the tracker. Top and
middle sequences were tracked using MI and Powell’s method, the bottom using downhill
simplex method and CR, a combination which offers better performance in controlled
environment.

Careful analysis of the function being optimized on these sequences yielded some
important observations. Whilst globally smooth, the function is very noisy at a micro
scale, confusing numerical derivative calculation. In addition, long valleys could be seen
which would lead to many iterations of gradient-based or random-search-based strategies.

The results of tracking on selected frames from the example sequences are shown in
figure 2, and the reader is strongly encouraged to consult the attached video files in order
to confirm that these are representative frames. Note that these sequences were tracked
offline, so the user is not obtaining tracking feedback during capture, and that one of the
sequences is of a subject who had not used the system before.

Local optima: The most striking performance characteristic of the system is the effect
of local maxima in the objective function. Occasionally the model will remain at the
same place for a number of frames, and then snap back onto the correct track. This
shows two things: first, that under strong variations in lighting or head pose (examples
are shown in fig 3), the similarity metrics will be higher for incorrect model positions
than for the true position. These incorrect interpretations tend to be stable, so the tracking
degrades gracefully in difficult situations. Encouragingly, when the head is returned to a
less difficult position, tracking resumes without the need for specialized restart strategies.

Comparison of similarity metrics: In the context of our tracking application, we
found that the pixel difference metric generally leads to poor performance. The two more
sophisticated metrics gave varying results depending on the specific sequence, with CR
being more suited to the controlled environment sequences, and MI to the real life ones.



Figure 3: Failure cases for MI and CR metrics In each image, the morphable model is
rendered overlaid on the target frame using the pose and model parameters output from
the tracker. (Left) MI tends to lead to poor performance on ‘controlled environment’
sequences at profile views—note the zoomed-in views, especially the double forehead!
(Right) CR attempts to match hair and neck areas on real-world sequences.

MI has difficulty with cases such as profile views, whilst CR attempts to scale the model
to include hair and neck from the subject. Figure 3 gives examples. We observe that
the greatest challenge for a comparison metric is handling changes in appearance due to
lighting — even having the subject look up or down can change the surface illumination of
the face a great deal. Applying an appropriate extracted texture to the model was essential
to achieving good performance, perhaps partly making up for the lack of rigorous lighting
estimation.

Rendering speed: A major issue is the time required per function evaluation. Cur-
rently all metric calculation is performed in the main CPU, requiring grabbing each ren-
dering into main memory from the graphics card. With this expensive overhead, typical
execution time is of the order of five to ten minutes per frame. This is a common issue
with current graphics hardware, but is expected to improve with driver technology.

6.1 Conclusions and extensions

This paper has shown that the use of gradient-free nonlinear optimizers as the compute
engine of a model-based tracker allows for robust and stable tracking which can recover
well from local optima. The experimental results show sequences with significant trans-
lation, rotation, and depth variation. In addition to pose estimation, we obtain a set of
model parameters in each frame giving shape information. Another positive feature of
our approach is that the tracker can often recover from badly tracked frames, as long as
the model is kept within a searchable distance of the subject.

Further work is required in expanding our model database and providing automatic
initialization of the tracker. Although the current system performs well given that only five
scanned models are used, shape estimation remains inaccurate. With a larger morphable
model containing more faces there is evidence that this estimation of shape could be quite
accurate, and separate texture extraction might no longer be necessary [4]. Initialization
via the detection of facial features and the use of a generic face detector is also an area
where significant increases in robustness can be gained. The speed of the system is limited



by slow transfer rates between the graphics hardware and main memory, however it may
be possible to compute the similarity metric on the programmable hardware of modern
graphics cards. A small empirical test of rendering a large number of model poses (with
and without copying the image back into main memory) suggests eliminating this transfer
would provide a speedup of two orders of magnitude.
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