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Abstract

Ranklets are a family of multiscale, orientation-selective rank features suit-
able for characterising complex patterns. On square pixel lattices, ranklets
bear a strong similarity to Haar wavelets. This extends to the sensitivity to
horizontal and vertical edges. We propose a generalisation of ranklets to
hexagonal pixels. The sixfold rotational symmetry of the lattice translates
into features that are tuned to three preferential directions in the image. We
present experimental results on a pattern recognition task (face detection)
over a large image database, using both square and hexagonal pixels. Com-
parison of the results in the two cases confirms the consistent performance of
the generalised ranklets.

1 Introduction

Hexagonal sampling of two-dimensional bandlimited signals is desirable for mathemati-
cal reasons. From the signal theoretic point of view, a hexagonal lattice requires the least
number of samples to represent a circularly bandlimited function, a class that models all
images formed by circularly symmetric lenses [5]. Also, a few well known connectivity
problems arising in the digital geometry of square lattices [7] do not occur in the hexago-
nal case.

Until recently, the use of hexagonal pixels has been hindered by the scarce availability
of sensors. However, recent technical progress has brought hexagonal sampling into the
domain of consumer electronics, with still camera manufacturers implementing the tech-
nology in their products. This is likely to foster a renewed interest in vision algorithms
specifically designed for hexagonal lattices.

Ranklets are a family of multiscale, orientation-selective, nonparametric rank features
based on the Wilcoxon rank-sum test [8]. In this paper, we present a generalisation of ran-
klets to hexagonal pixels. In the case of traditional square-pixel images, the orientation
selectivity pattern of ranklets resembles that of Haar wavelets. The sixfold rotational sym-
metry of the hexagonal lattice allows the construction of features tuned to three different
orientations.

We evaluate hexagonal-lattice ranklets by comparing them with the original square-
lattice features in a face detection experiment over the 24 �045 test images of the MIT-
CBCL face database. Hexagonal ranklets are applied to a resampled version of the im-
ages. Our results confirm the consistently good performance of ranklets independent of
the sampling geometry.
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Figure 1: A hexagonal pixel lattice displayed with the skew basis ��u��v�.

2 Hexagonal Pixel Lattices

Hexagonal pixels represent the sampling solution with lowest sampling density for circu-
larly bandlimited images. Not surprisingly, the arrangement of cones in the fovea and of
the ommatidia in the compound eyes of insects follow a hexagonal pattern.

In this work, we make use of a lattice of regular hexagonal pixels of unit width. The
points of the lattice can be obtained as �p � u�u� v�v where u and v are their (integer)
coordinates referred to the skew basis ��u��v� shown in Figure 1, with �u � �1�0� and �v �
�1�2�

�
3�2� (see [4, 9]).

Resampling is performed by separable interpolation of the pixels of the original rect-
angular lattice. We employ a separable Sinc function ψ�x�y� multiplied by a Hanning
window, that is ψ�x�y� � φ�x� �φ�y� with

φ�x� �

�
sin�πx�

πx

� 1
2 �

1
2 cos

� 2πx
W

��
if �x��W

0 if �x� �W .
(1)

The window size is fixed at W � 8 (see [10]).
Note that, although the hexagons are regular, the sampling distances along the vertical

and horizontal axes differ. For this reason, the originally 19� 19 images of the MIT �
CBCL database employed in our tests occupy an area of 19� 22 hexagonal pixels. Our
choice of a lattice spacing amounts to a slight oversampling of the image. However, it
seemed convenient to use hexagonal pixels of unit width because the arrangement of the
nodes of φ�x� can be exploited to reduce the number of computations.

3 Ranklets: a Family of Wavelet-style Rank Features

The first stage in computing ranklets involves ranking the intensity values in (part of) the
image, i.e. finding the permutation π of the integers from 1 to N that expresses the relative
order of the intensity values of the N pixels in a suitable image window.



Figure 2: The three partitions for a 2� 2 square-pixel window. Note the similarity with
the three Haar wavelets that can be obtained by assigning the value �1 to the light areas
and �1 to the shaded areas).

In the next Section we recall the definition of a classic non-parametric hypothesis
test, the Wilcoxon rank-sum test, from which ranklets derive. We will then apply the
underlying ideas to the characterisation of intensity variations in image neighbourhoods
in Section 3.2.

3.1 The Wilcoxon Rank-sum Test

The Wilcoxon rank-sum test (also known as the Mann-Whitney U-test) is a hypothesis
test designed for the comparison of two treatments [3]. Suppose that N quantities are split
in two groups of n “treatment” and m “control” observations (according to the standard
terminology). We ask whether the treatment observations are significantly larger than
the controls. To this end, we define the Wilcoxon rank sum statistic � s as the sum of
treatment ranks: �s � ∑n

i�1 π�i�. The logic behind this definition is that large values of
the treatment observables relative to the control observables will result in a large value
of�s.

After an experiment is performed, the treatment values are judged to be significantly
larger than the controls if �s is above a critical value τ . The choice of τ defines the
confidence level of the test.

In the next Section, we apply this test to pixel values to determine intensity variations
between image regions.

3.2 Ranklets on Square Pixels

Given an image I, we indicate with π��x� the rank of the intensity I��x� of pixel �x among
the intensities of the pixels in a suitably sized window W . To simplify matters, we assume
that no two pixels have the same intensity; ties can be broken at random when they occur.

The Wilcoxon test can be used to determine brightness variations among any two
subsets of the pixels in W . On square lattices, such subsets can be conveniently chosen in
close analogy with Haar wavelets [2, 8]. The resulting three partitions W � T j �Cj� j �
1�2�3 for the case of a 2�2 window are displayed in Figure 2. For each of them we can
compute the Wilcoxon statistics as � j

s � ∑
�x�Tj

π��x�, which yields � 1
s � π�2�� π�3�,

� 2
s � π�3��π�4� and� 3

s � π�1��π�3� (pixels are labelled as shown in Figure 2).
The geometric interpretation of these quantities is straightforward. Consider for in-

stance � 1
s and suppose that the local neighbourhood W straddles a vertical edge, with

the darker side on the right (where C1 is located) and the brighter side on the left (corre-
sponding to T1). Then� 1

s will be large, as many pixels in T1 have a higher intensity and
therefore rank higher than those in C1. Conversely,� 1

s will be low if the dark and bright



Figure 3: The three partitions for the smallest hexagonal window W1. Shaded pixels
indicate the C sets; the central pixel is discarded. The black line indicates the orientation
to which each ranklet is maximally responsive.

sides of the edge are reversed. Horizontal edges or other patterns with no global left-right
variation of intensity will give an intermediate value. Therefore, � 1

s responds to verti-
cal edges in the images. By a similar argument � 2

s detects horizontal edges, while � 3
s

is sensitive to corners formed by horizontal and vertical lines. These response patterns
closely match those of the corresponding Haar wavelets obtained as indicated in Figure 2.

3.3 Ranklets on Hexagonal Pixels

We can easily generalise the approach outlined in the preceding section to hexagonal pixel
lattices. In this case, we can exploit the sixfold rotational symmetry of the lattice to obtain
ranklets tuned to three preferential directions (a set of linear kernels over hexagonal pixels
with analogous directional selectivity is discussed in [11]). For the smallest possible
window W1 shown in Figure 3 we obtain three partitions T j �Cj���x0�, where the central
pixel �x0 of W1 is not considered in the ranking. The corresponding values of � s are
� 1

s � π�4��π�5��π�6�,� 2
s � π�3��π�4��π�5� and� 3

s � π�2��π�3��π�4�.
We can conveniently replace� j

s with the equivalent Mann-Whitney statistics

�
j

YX ��
j

s � �N�2�1�N�4� (2)

which has an immediate interpretation in terms of pixel comparisons. As can be easily
shown [3], � j

YX
is equal to the number of pixel pairs ��x p��yq� with �xp 	 Tj and �yq 	 Cj

such that I��xp� � I��yq�. Its possible values therefore range from 0 to the number of pairs
��xp��yq� 	 Tj �Cj, which is N2�4. For this reason, ranklets are conveniently defined as

� j �
�

j
XY

N2�4
�1 (3)

(this also applies to square-pixel ranklets [8]). Thus the value of� j will be 1 if and only
if, for all the possible pairs of one pixel in T j and one pixel in C j, the first is brighter than
the second. If the opposite is true,� j will be �1.

3.4 Multiscale Ranklets

In view of the similarity between Haar wavelets and ranklets it is straightforward, in the
case of square pixel lattices, to consider multiscale versions of ranklets corresponding to
the different scalings of a Haar wavelet.



Figure 4: The three partitions for window W2, including up to the second order neigh-
bours. Shaded pixels indicate the C sets; light areas correspond to the T sets, and the
central pixel is discarded. The black line indicates the orientation to which each ranklet
is maximally responsive. Note how the directional selectivity pattern shown in Figure 3
is preserved.

This can be easily generalised to hexagonal pixel lattices by constructing around pixel
�x0 the window Wi comprising its neighbours up to the i-th order, and subsequently parti-
tioning it into the sets Tj �Cj ���x0� as suggested in Figure 4 for the case of neighbours
up to the second order (note that care has been taken to preserve the same directional
selectivity pattern as in Fig. 3). Generalisation to higher values of i is straightforward.

3.5 Efficiency Considerations

As we have seen in Section 3.3, � j
YX

equals the number of pairs ��x p��yq� 	 Tj �Cj such

that the intensity at �xp is larger than the intensity at �yq. Since N2�4 pairs can be formed
out of the N pixels in W 
 ��x0�, it would seem that the number of comparisons required
should grow with the square of the area of W .

Notice however that these pairwise comparisons are never explicitly carried out; the
value of � j

YX
is obtained by subtracting a constant from the Wilcoxon statistics � j

s (see
Equation 2). In turn, � j

s is computed by ranking the pixels in W , which only requires
order of N logN operations. The intuitively appealing interpretation in terms of pairwise
pixel comparisons turns out to be a “free” by-product of the sorting operation.

4 Experimental Results

In order to validate our extension of ranklets to hexagonal pixel lattices, we present com-
parative experimental results in a pattern recognition task. More specifically, we discuss
a face detection experiment over the images of the MIT-CBCL face database [6], that
consists of low-resolution grey level images (19� 19 � 361 square pixels) of faces and
non-faces. Square-pixel ranklets have been shown to outperform several other algorithms
in tests over this dataset [8].



Figure 5: Training faces (left), test faces (centre), and test non-faces (right) from the
MIT-CBCL set. Notice how a few of the test faces in the database are incorrectly framed
(centre, lower right).

The database consists of a training set of 2 �429 faces and a test set of 472 faces and
23�573 non-faces. All facial images nearly occupy the entire frame; considerable pose
changes are represented (Fig. 5). The database also contains a set of 4 �548 non-faces
intended for training. In our experiments we have discarded this training set of non-faces,
since the notion of “non-face prototypes” appears to be problematic.

We employ two copies of the database, namely the original dataset and a hexagonal-
pixel version obtained by resampling all the images as described in Section 2. Images are
encoded as a vector of ranklets according to the lattice type. In both cases, the minimal
window W displayed in Figure 2 (or respectively Figure 3) is centred at all possible loca-
tions in the image. Each location contributes to the feature vector the three ranklets � j
corresponding to the three partitions of the respective window, according to Equation 3.

For the sake of simplicity, as well as to evidence the descriptiveness of the features,
we adopted a straightforward distance-based classification algorithm. The feature vector
extracted from a test image is compared with those obtained from the training images
(obviously sampled in the same way). The image is classified as a face if the distance
from the closest example is lower than a threshold τ . By varying τ , we obtain the Re-
ceiver Operating Characteristic (ROC) curves displayed in Figure 6. As can be seen, the
performance of the two types of features is comparable. The Equal Error Rates (EERs)
for hexagonal and square pixel ranklets are 19% and 17% respectively. Considering the
noise introduced by the resampling process, these two figures are essentially equivalent.

In Figure 6 we also display the ROC curve for multiscale hexagonal ranklets. In this
case, the feature vector was constructed using 5 windows Wi of increasing size including
all neighbours of the central pixel up to the 5th order, as outlined in Section 3.4. For each
scale, the window was centred at all possible locations in the image. The EER in this
case is 17%. The corresponding EER for multiscale square-pixel ranklets is 16% [8]. The
behaviour of multiscale hexagonal-pixel ranklets is thus essentially equivalent to that of
the analogous square-pixel features.

The error rates reported above represent an improvement over published results ob-
tained with other algorithms, including linear Support Vector Machine classifiers and the
Sparse Network of Winnows (SNoW) [1].
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Figure 6: ROC curves for ranklets over hexagonal pixels (�), ranklets over square pixels
(Æ) and multiscale ranklets over hexagonal pixels (�).

5 Conclusions

We have presented a generalisation of ranklets to hexagonal pixel lattices that maintains
a very close analogy with the original features. Hexagonal and square-pixel ranklets are
both defined in terms of the Mann-Whitney statistics, and admit the same interpretation
in terms of pairwise comparisons of pixel intensity values. Also, both features easily lend
themselves to multiscale implementations.

Orientation selectivity is one of the main advantages of both square and hexagonal-
pixel ranklets. However, the precise response pattern changes with the lattice. Traditional
ranklets, similarly to Haar wavelets, are sensitive to horizontal and vertical lines. Hexag-
onal ranklets, due to the sixfold rotational symmetry of the lattice, are tuned to three
different orientations in the image.

We have experimentally validated the soundness of our generalisation by comparing
hexagonal and square ranklets in a challenging pattern recognition task, namely face de-
tection. Our experiments, involving the large collection of test images (over 24 �000) from
the publicly available MIT-CBCL database, show that hexagonal ranklets perform con-
sistently with square-pixel ranklets. The very similar results obtained on the two pixel
lattices also represent an improvement on other published approaches.

Recent advances in CCD technology are introducing hexagonal sampling into con-
sumer electronics applications. For this reason, we believe the existence of a generali-
sation to hexagonal pixel lattices to represent a positive contribution to the usability and
practical value of the ranklet algorithm.
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