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Abstract

The factorization method by Tomasi and Kanade simultaneously recovers
camera motion and object shape from an image sequence. This method is
robust because the solution is linear by assuming the orthographic camera
model. However, the only feature points that are tracked throughout the
image sequence can be reconstructed, it is difficult to recover whole object
shape by the factorization method. In this paper, we propose a new method
to interpolate feature tracking so that even the loci of unseen feature points
can be used as inputs of the factorization for object shape reconstruction. In
this method, we employ projective reconstruction to interpolate untracked
feature points. All loci of all detected feature points throuout the input image
sequence provide correct reconstructed shape of the object via the factoriza-
tion. The results of reconstruction are evaluated by the experiment using
synthetic images and real images.

1 Introdution

Modeling of real objects play an important role for realizing applications of virtual real-
ity. Shape recovery from an image sequence taken with unknown motion camera is one
of methods for modeling of real objects. Tomasi and Kanade proposed a method for mod-
eling from a handy video image sequence, which is called as the factorization method
[10]. In the factorization method, they assume the orthographic projection so that the
loci of feature points in the image sequence can robustly be separated into camera motion
and shape of the object by a linear solution. However, the factorization method has the
following problems for applying it into real application.

The first problem is that the error in the recovered shape and camera motion is caused
by the approximation error to orthographic projection. Therefore, various improved fac-
torization method by avoiding the orthographic projection have been proposed, such as
using the para-perspective projection [6], or the perspective projection [1, 3]. However,
those are still suffered by the approximation of the camera model.

The second problem is that the 3D position of a feature point can be recovered only
if the locus of the feature point is tracked through all the input image sequence. In a real
image sequence, it is difficult to track sufficient number of feature points to recover the
object shape, because of the change of illumination conditions, occlusion of the feature
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points, out of FOV of the feature points, etc. One solution for such problem is divide an
input image sequence into some sub-sequences, so that more feature points can be tracked
throughout the sub-sequences. Then the 3D positions recovered in the sub-sequences are
integrated into one shape model, but the 3D recovery errors in the sub-sequences are
accumulated. Shum et.al.[9] proposed to apply PCA for interpolating missing feature
tracking locus. Although the PCA provides the most possible interpolation, the error
caused by the missing data cannot removed completely.

Alternative solution for the second problem is to estimate the projected position of
the feature point that cannot be tracked in the input image sequence. One approach is
already mentioned by Tomasi and Kanade [10]. In this approach, camera positions in the
image sequence are first estimated by applying the factorization method to the tracked
feature points throughout the sequence, even though the number of the tracked points is
small. Then the positions of other untracked feature points are estimated by using the
camera position estimated by the first factorization. However, the estimated positions of
the untracked feature points are affected by the approximation error of the orthographic
projection.

In this paper, we propose a novel approach to solve the second problem of the factor-
ization via projective reconstruction. In this method, the projected positions of untracked
feature points are estimated by projective reconstruction, so that all feature points can be
tracked in all frames in the input image sequence. Then the 3D positions of all feature
points can be recovered from the complete loci of them by using the factorization method.
Since the projective reconstruction employed in this method provides accurate projected
point under the perspective projection camera model, the interpolated loci by the pro-
posed method is not affected by the camera model approximation error. The experimental
results for demonstrating the efficacy of the proposed method are shown in the section 5.

2 Factorization by Tomasi and Kanade

The factorization proposed by Tomasi and Kanade is a method for simultaneous recovery
of both camera motion and object shape from the loci of feature points tracked in an image
sequence taken with a moving camera.

In the 3D coordinate with the origin at the center of the set of feature points, the pose
of the camera off -th frame and the position ofp-th feature point are represented as (i f，
j f，k f ), andsp, respectively. The projected position of thep-th feature point on thef -th
frame is then indicated by(uf p,vf p). A measurement matrixW is defined from the loci
of P feature points throughF frames as the following Eq.(1).

W =




u11 · · · u1P
... uf p

...
uF1 · · · uFP

v11 · · · v1P
... vf p

...
vF1 · · · vFP




(1)

Under the assumption of the orthographic projection of the camera, the modified mea-
surement matrixW∗, which is derived by subtracting an average of each row from every



value in the measurement matrixW, can be represented by the inner product between
camera pose matrixM and object shape matrixS as shown in Eq.(2).

W∗
(2F×P) = M (2F×3)S(3×2F) (2)

Accordingly, factorizingW∗ into M andSprovides the camera motion at every frame and
the 3D position of every feature position. Since SVD is employed to factorizingW∗, the
recovery of the camera motion and the shape can robustly be computed.

3 Projective Reconstruction

A 3D projective transform can be represented by the following equation with the homoge-
nous coordinate.

λ X̃′ = HpX̃ (3)

whereHp indicates an arbitrary4×4 matrix. Projective reconstruction [7, 13] recovers
the shape of the object with ambiguity of arbitrary projective transforms. An object shape
taken with two cameras can be recovered in terms of projective reconstruction, if the fun-
damental matrix between the two cameras is known. In our paper, we employ a projective
reconstruction method based on SVD[8], of which the computation is relatively robust,
for estimating projected position of untracked feature points.

For this projective reconstruction, fundamental matrixF12 between two base framesf1
and f2, which are selected from an input image sequence, is computed by corresponding
2D positions between two base frames that can be obtained from some of tracked feature
points. The fundamental matrix gives the epipolee′ of the second base framef2 as shown
in the following equation.

FT
12e
′ = 0 (4)

Then, the projective space spanned with two base frame images is projected onto each
base frame image by the following projection matricesP1 andP2.

P1 = [I0]
P2 = [Me′] (5)

where

M =− 1
‖e′‖2

[
e′
]
×F12. (6)

Therefore, the 3D position of a point in the projective space,X = [x,y,z, t]T , can be
related to the projected 2D positions of the point on two base frame images,m = [u,v]T，
andm′ = [u′,v′]T , as the following equation.

AX = 0. (7)

Here, letPi representsi-th column vector of the projection matrixP, and then the follow-
ing equation is derived.

A =
[
P1

1−uP3
1,P

2
1−vP3

1,P
1
2−u′P3

2,P
2
2−v′P3

2

]T
(8)

Accordingly, we can compute the position of the projective reconstructionx,y,z, t by
applying SVD toA for computing the eigen vector corresponding to the minimum SVD
value. The eigen vector isX = [x,y,z, t]T .



4 Proposed Method

The proposed method takes an input image sequence of an object that is captured by
a handy video camera. The image sequence is manually divided into multiple sub-
sequences with overlapped some frames. In the first frame of each sub-sequence, fea-
ture points are extracted and tracked though the sub-sequence by Kanade-Lucas-Tomasi
Feature Tracker [5, 11]. Some of the extracted feature points cannot be tracked until
the end frame of the sub-sequence because of illumination change, occlusion, out of the
FOV, etc. The positions of untracked feature points for such cases are estimated by “in-
tra sub-sequence interpolation”. Then the feature loci obtained in each sub-sequences
are integrated according to the feature points in the overlapped frames. The loci in un-
overlapped frames are estimated by “inter sub-sequence interpolation”. Finally, locus of
every feature point is obtained throughout the input image sequence, so that complete
measurement matrix can be obtained. The factorization method is once applied to the
complete measurement matrix, and then the whole 3D shape can be reconstructed.

4.1 Feature Tracking for Sub-sequence

A handy video camera captures an object with the camera moving around the object
in about 360◦, and an image sequence consist ofF frames is obtained. The image se-
quence is divided into some sub-sequences with overlapped frames. The division into
sub-sequences is performed by manual operation.

Feature points are detected in the first frame in every sub-sequence, and tracked in the
sub-sequence. The tracking of some features are failed, and then the loci of such feature
points are broken.

4.2 Intra Sub-sequence Interpolation

The positions of feature points that cannot be tracked are estimated by projective recon-
struction of the untracked feature points.

Suppose that feature point represented bysl is not tracked infl -th frame. Two base
framesf1 and f2 for projective reconstruction of the pointsl are selected from the frames
in which the pointsl can be tracked as shown in Fig. 1(a). In our experiment, we select
the first frame and the 30th frame in each sub-sequence as a default selection.

In the projective space spanned by the base frames, 3D positions of all feature points
that appear in both the base frames are projectively reconstructed based on the method
described in Sec.3 (Fig.1(b))．In the projectively reconstructed points, some points are
also tracked infl -th frame. Using such points, the projection matrixPl , which projects
a point in the projective space ontol -th frame fl , is computed according to the following
equation (Fig.1(c)).

λmi = Pl si (9)

wheresi represents the projectively reconstructed points which are also tracked infl -th
frame at positionmi . λ indicates an arbitrary scaling factor. The computed projection ma-
trix Pl provides the position of the untracked pointsl in fl -th frame as shown in Fig.1(d)．

According to this procedure, all untracked points can be interpolated in each sub-
sequence.
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Figure 1: Interpolation of projected position of untracked feature point.

4.3 Inter Sub-sequence Interpolation

Intra sub-sequence interpolation can generate a measurement matrix that includes all loci
of feature points detected in the first frame of a sub-sequence. Inter sub-sequence in-
terpolation integrates the measurement matrix of each sub-sequence into a measurement
matrix that includes all loci of feature points detected in all of the sub-sequences.

Neighboring two sub-sequences share some overlapped frames. For integrating both
sequences, two base frame images are selected from the overlapped frames. Then the
feature points included in both sequences are projectively reconstructed in the projective
space spanned by the base frame images. Since the projective space is shared by two sub-
sequences, feature points in one sub-sequence can be projected onto frames in another
sub-sequence. Accordingly, all the loci of feature points in both the sub-sequences can
be estimated for all frames in both sub-sequences. Such procedure is also applied to all
pairs of neighboring two sub-sequences, and then the complete measurement matrix that
include all loci of the feature points detected in all sub-sequences.

4.4 Factorization and Shape Modeling

By applying the factorization to the complete measurement matrix, 3D positions of all
feature points and camera motion of all frames in the sequence can be recovered. Delau-
nay triangulation generates a 3D polygon mesh model from the 3D feature points. Texture
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(a)Feature points extracted in
170th frame.

�����
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until 255th frame.
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(c) Projected positions of
25 untracked feature

points onto 255th frame,
which are interpolated by

the intra sub-frame
interpolation.
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(d) Projected positions of
91 untracked feature
points onto 1st frame,

which are interpolated by
the inter sub-frame

interpolation.
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(e) Projected positions of
25 untracked feature

points onto 255th frame,
which are interpolated by
Tomashi and Kanade’s
measurement matrix

interpolation.

Figure 2: Projected position of feature points in the experiment whose input is a synthetic
image sequence.

on every polygon in the model is rendered from the images of the sequence. Such texture
mapping provides realistic 3D model that can be shown in a virtual space.

5 Experiments and Discussions

For demonstrating the efficacy of the proposed method, a computer-synthesized image
sequence and a real image sequence are prepared as inputs of the proposed method.

5.1 Experiments with Synthesized Image Sequence

An image sequence of a virtual object is synthesized by computer graphics software “Pov-
Ray” for demonstrating the accuracy in the interpolation. The image sequence consists
of 360 frames with480×360pixels. The sequence is divided into 4 sub-sequences with
30 frames overlapping between neighboring sub-sequences. Feature points are the corner
points of the checker pattern. In each sub-sequence, the first frame captures three planes
of the object, and the last frame only captures two planes. This means that about third of
the feature points detected in the first frame can not be tracked until the last frame.



(a)view from slanting (b)view from a top

Figure 3: 3D feature points and 3D textured model reconstructed by the proposed method
in the experiment whose input is a synthetic image sequence

Fig.2(a) shows 91 feature points extracted in the 170th frame that is the first frame in
the sub-sequence #3. Until the 255th frame that is the last frame of the sub-sequence #3,
66 feature points shown in Fig.2(b) are tracked. Using the intra sub-frame interpolation,
the positions of the untracked 25 points in the 255th frame are estimated as shown in
Fig.2(c). Those 25 points are the corner points of the checker pattern on the unseen plane
(face A) of the object in the 255th frame.

Using the inter sub-frame interpolation, the positions of 91 points extracted in the first
frame of the sub-sequence #3 shown in Fig.2(a) are also estimated in the first frame of the
sub-sequence #1 as shown in Fig.2(d). Although those 91 points are not seen in the 1st
frame, inter sub-frame interpolation can estimate their positions.

Under the same condition as the intra sub-frame interpolation shown in Fig.2(c), the
positions of the untracked points in the 255th frame are interpolated by using the inter-
polation method by Tomashi and Kanade, which are shown in Fig. 2(e). In Fig. 2(e),
the interpolated positions are not fit on the surface of the unseen plane (face A). This is
because that the proposed method estimates the position of the untracked points by the
projective reconstruction, while Tomashi and Kanade method estimates based on shape
reconstruction under the orthographic approximation with the factorization.

Since we know the accurate projected positions of all the feature points because of the
computer-synthesized image sequence, the interpolation error can be evaluated. The av-
erage errors of the intra sub-sequence interpolation (Fig.2(c)) and the inter sub-sequence
interpolation (Fig.2(d)) are 2.84 pixels and 2.89 pixels, respectively. Considering that the
error of feature point extraction and tracking is about 1.2 pixels, the error caused by the
interpolation using the proposed method is relatively small.

In Fig.3 shows the recovered 3D feature points and 3D polygon mesh model with
texture. The fact that the checker pattern can correctly be recovered on the reconstructed
3D model demonstrates the accuracy of the proposed method.

Fig.4 shows the 3D positions of the feature points and the pose and the direction of
camera which are recovered by (a) the measurement matrix interpolation Tomashi and
Kanade method, (b) simple integration of partial shapes which are reconstructed by ap-
plying the factorization to each sub-sequence independently, and (c) the proposed method.
The 3D recovery errors in shape reconstruction for (a), (b), and (c) are 0.172, 0.052, and
0.016, respectively. The error value represents the averaged distance with the accurate



(a) Tomashi and Kanade
interpolating method.

(b) Simple integration
method.

(c) Proposed method.

(a) (b) (c)
3D recovery error 0.172 0.052 0.016

Figure 4: Comparison with the conventional method

shape. One unit of the length is defined by one edge of the object cube shape.
As shown in Fig.4(a), the interpolation method by Tomashi and Kanade includes

larger error, which is caused by approximation of camera model. Their interpolation
is based on the 3D position estimated by the factorization, in which the camera model is
approximated to orthographic. This approximation causes error in interpolated position.

The simple integration of partial shapes accumulates the shape reconstruction error of
each factorization. The factorization only minimumizes the error in each sub-sequence,
but does not optimize for whole the sequence. The recovered camera motion also indicates
the error accumulating behavior.

On the other hand, the advantage of the factorization, such that the estimation error
in shape and camera motion can be minimumized by using the SVD, affects to whole
the input image sequence in the proposed method. This is because that the projective
reconstruction interpolates all untracked feature points in all frames in the sequence, so
that the factorization can be applied to whole the sequence at once.

5.2 Experiments with Real Image Sequence

A handy camera captures the car miniature as shown in Fig.5 as an image sequence con-
sists of 256 frame images with480×360pixel resolution. Using the proposed method,
3D positions of feature points on the object can be recovered as shown in Fig.6. From
the feature points, 3D polygon mesh model with the texture can be recovered as shown in
Fig.7.

6 Conclusion

In this paper, we propose a method for generate a measurement matrix that include loci
of all extracted feature point throughout an input image sequence by intra and inter in-
terpolation of sub-sequences based on the projective reconstruction. By applying the



factorization to the complete measurement matrix, shape of whole object and camera mo-
tion for all frames in the sequence can correctly be recovered. The experimental results
demonstrate the accuracy in the shape and camera motion reconstruction of the proposed
method.

The accuracy performance depends on the scheme for dividing input sequence into
sub-sequences and the selection of base frames for the projective reconstruction. There-
fore, optimizing the input sequence division and base frame selection will be one of future
research topics.
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(a)frame1 (b)frame128 (c)frame255

Figure 5: The real image sequence of the experiment whose input is a real image sequence

(a)view from slanting (b)view from a top

Figure 6: 3D feature points model reconstructed by the proposed method in the experi-
ment whose input is a real image sequence.

(a)view from before slant and mesh data (b)view from slant back

Figure 7: 3D model reconstructed by the proposed method in the experiment whose input
is a real image sequence


