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Abstract

Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction
method proposed recently. It can reveal the intrinsic manifold of data, which
can’t be provided by classical linear dimensionality reduction methods. The
application of LLE, however, is limited because of its lack of a mapping
between the observation and the low-dimensional output. Inthis paper, we
propose a method to establish an analytical mapping for LLE and validate
its efficiency with the application in multi-pose face synthesis. Furthermore,
through learning the similarity for the same kind of pose change mode of
different persons, we generalize our method to small set cases with methods
of statistical learning theory. The experiments of multi-pose face synthesis
on small sets prove that our idea and method are correct.

1 Introduction

Dimensionality reduction is an important and necessary preprocessing of multidimen-
sional data, such as face images. There are four purposes to reduce dimensionality of
observation data: (1) to compress the data to reduce storagerequirements; (2) to elimi-
nate noise; (3) to extract features from data for recognition; (4) to project data to a lower-
dimensional space, especially a visualized space, so as to discern the distribution of data.
For face images, classical dimensionality reduction methods include Eigenface [1] , Inde-
pendent Component Analysis (ICA) [2, 3], Linear Discriminate Analysis [4], and Local
Feature Analysis (LFA) [5, 6], etc. The linear methods have their limitations. Firstly, they
cannot reveal the intrinsic distribution of a given data set. Secondly, if there are changes
in pose, facial expression and illumination, the projections may not be appropriate and
the corresponding reconstruction error may be much higher.

Compared with linear dimensionality reduction methods, Nonlinear Dimensionality
Reduction (NDR) techniques yield better results. Kernel-based methods are important
nonlinear techniques. Among these, Kernel Principal Component Analysis [7], Kernel
Independent Component Analysis [8] and Kernel Discriminate Analysis [9] have been
investigated and proven effective.

BMVC 2003 doi:10.5244/C.17.1



LLE (Locally Linear Embedding) and ISOMAP are two other recently developed non-
linear dimensionality reduction techniques. LLE maps the observation data to a single
global coordinate system of lower dimensionality preserving the neighbor relationships
[10]. ISOMAP computes pair-wise distances in the geodesic space of the manifold, and
then performs classical Multidimensional Scaling (MDS) tomap data points from their
high-dimensional input space to low-dimensional coordinates of a nonlinear manifold
[11]. Both LLE and ISOMAP can reveal the underlying structure of data.

Although LLE and ISOMAP are effective dimensionality reduction methods, there are
open problems. These two methods both lack a process for mapping between observations
and embedded space. Yet mapping is very necessary for dimensionality reduction in
many real-world problems, such as data compression. The first problem to solve is how
to establish the mapping. Furthermore, in order to reveal the underlying manifold of
data, the two methods must be applied on large sets. The intuitive description of revealed
manifold is indistinct and inconvincible in small set cases. In many examples of machine
learning, however, data is limited so that we must face small-set problems. The second
problem is the issue of how to learn the analytical description of manifold and the mapping
of a given high-dimensional small set.

In this study, we make use of multi-pose face images to research the two problems
above based on LLE. First, we propose an analytical method based on nonlinear regres-
sion to establish the process for mapping. Second, we develop our method to adapt to
small sets by a priori learning and methods from statisticallearning theory. The method
is based on the idea that statistical learning theory is an important small-set learning
method, which is effective in many applications. If some structural information in high-
dimensional space can be obtained as transcendental knowledge, the small-set learning
method can be used to reveal the true manifold with fewer samples. In the case of multi-
pose face images, we believe that the multi-pose face image sets of different persons share
a similar structure in observation space when their heads rotate in the same direction.
Therefore we can obtain the structural information in high-dimensional space by learning
large sets of data for a few persons and then apply it to the learning in small set cases.
We describe the learning method in detail and then validate it through reconstruction and
synthesis of multi-pose face images based on small sets.

Matthew Brand established a nonlinear mapping from high-dimensional sample space
to low-dimensional vector space, recovering a Cartesian coordinate system for the mani-
fold from which the data is sampled [12]. The principle of hismethod is to first decom-
pose the data into locally linear low-dimensional patches then merge them into a single
low-dimensional coordinate system and finally compute forward and reverse mappings
between samples and coordinate spaces. For constructing the mapping, the method need
large sets to accomplish the training.

The method we propose in this paper is an appearance-based method. In face recogni-
tion field, there are appearance-based methods published, such as SLAM [13], Eigenfaces
[1] and Illumination Cone method [14]. They demonstrated the power of appearance-
based methods both in ease of implementation and in accuracy. Especially Illumination
Cone method can synthesize faces after it learns a face 3-D geometry from a few face
images. However, there are three assumptions in Illumination Cone method: The surface
is Lambertian, The object is convex, and the pose is fixed and frontal. The important
difference of our method with Illumination Cone method is that we focus on the common
law when different faces move. So we learn structural information in high-dimensional



space with large data sets of a few faces. Then using the structural information we learned
and a small data set of a different face we synthesize new faceimages for this different
face. As a result, we need more face images before we synthesize new face images for a
different face than Illumination Cone method does. However, this is a new way to study
reconstruction of multi-pose face images. We conclude thatthere are indeed common
laws when different faces move. And the common law can be shared with other faces
reconstruction. In our experiments, we firstly used many multi-pose images of person A
to learn the knowledge of head movement. Then we applied the obtained knowledge to
construct analytical model for person B with fewer samples.(In our experiments, about
20 samples are enough to construct new analytical model for person B.). Our objective
is to establish analytical mapping to describe the manifoldof data set on small sets. Fur-
thermore, there are no Lambertian and convex assumptions inour method. It makes our
method easy to use.

Other sections of the paper are organized as follows. Section 2 of this paper gives
an overview of NDR. We mainly introduce the LLE algorithm andsome previous works
based on it. The analysis of dimensionality reduction of multi-pose face images applying
LLE is given in Section 3. This section also achieves a discussion of the method. In
Section 4, a nonlinear regression method based on Support Vector Regression (SVR) is
given to obtain the parametric mapping in small set cases. The results of face image
synthesis based on small sets are shown. Our conclusions areprovided in the final section
of the paper.

2 An Effective Nonlinear Dimensionality Reduction
Method

Tenenbaum, Silva and Langford presented the nonlinear dimensionality reduction method
ISOMAP in 2000 [11]. ISOMAP computes geodesic distance along a manifold and then
applies Multidimensional Scale (MDS) to reduce dimensionality. In fact, this method
maintains the data distribution manifold by preserving thegeodesic distance between data.
Sam Roweis and Lawrence Saul implemented nonlinear dimensionality reduction by Lo-
cally Linear Embedding (LLE) [10]. LLE maps the high-dimensional data to a single
global coordinate system in a manner that preserves the neighboring relationships. The
two methods have been successfully applied to reduce the dimensionalities of artificial
data and real-world data, such as “Swiss roll” data and face images. In Reference [10],
an experiment of dimensionality reduction of face images isdemonstrated. The intrinsic
dimension and structure of the data set, which includes changes of facial expression and
pose, were discovered in the experiment. Other work, in which the true manifold structure
of data is revealed, has also been conducted [15, 16]. DennisDeCoste then developed the
Kernel Locally Linear Embedding method [17]. All these previous applications of non-
linear dimensionality reduction mainly focused on data analysis.

As further background, the standard LLE algorithm is given as follows:
Suppose the observation data consist ofN real-valued vectorsYi, i = 1, ...,N, Yi ∈ RD,

sampled from some smooth underlying manifold.
Step 1: To compute the neighbors of each data point, we shoulddefinek as the number

of nearest neighbors or the number of points in the super sphere of fixed radiusr.
Step 2: Define neighbors representation cost function as Equation 1:
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If Yj does not belong to the neighbors ofYi, Wi j = 0. Considering translation invari-
ance, we add this constraint:

∑
j

Wi j = 1. (2)

We can get the weightsWi j that best linearly reconstructsYi from its neighbors by
solving the constrained least-squares problem:

W = argmin
W

ε(W ). (3)

Step 3: Fixing weights, compute the d-dimensional embedding vectors{Xi}i=1...,N ∈
Rd , which are best reconstructed byWi j. This can be achieved by minimizing the follow-
ing cost function:
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So solveX :

X = argmin
X

ε(X). (5)

The details and proofs of this algorithm can be found in Reference [18].
There is no doubt that LLE is an efficient dimensionality reduction method. LLE,

however, lacks a process for mapping between the observations and the embedded space.
Thus, dimensionality reduction can only be implemented in training sets. The test data
can be projected to the embedded space. Because of this disadvantage, the applications
of LLE are confined to the area of data analysis. In addition, as a kind of local linear
method, LLE has the drawback that it should be based on large sample sets to achieve an
intuitive presentation of the nonlinear manifold.

3 Dimensionality Reduction of Multi-pose Face Images
by LLE

As a result of head rotation, the human face exhibits variety. Multi-pose face images,
especially images formed as a result of horizontal and vertical rotation, cause difficulty
in face recognition. Some examples of multi-pose face images are shown in Figure 1. A
sequence of face images are obtained when the human head finishes a rotation with the
model from left to right or up to down. Figure 2 exhibits an image sequence with head
rotation from left to right.

Although the observation data are high dimensional, the intrinsic dimensionality of
some face images may be very low. In lower-dimensional space, especially visualized
space, it is easier for us to find the underlying structure through observation. LLE is
applied to reduce the dimensionality of face images in our experiment. In the experiment,



Figure 1: Examples: multi-pose face images.

Figure 2: A sequence of face images with head rotating from left to right.

a sequence includes 160 images, sampled when the head rotates. Figure 3 shows the result
of dimensionality reduction by LLE on the sequence.

In Figure 3, the projected points by LLE algorithm scatter along a smooth curve and
the arrangement of points on the curve associates with the rotation trend.

Although LLE is an efficient dimensionality reduction method, it lacks a process for
mapping between the observations and the embedded space. Inaddition, the revealed
underlying manifold can only be observed subjectively. Thus the applications of LLE are
confined to the area of data analysis. Furthermore, as a kind of local linear method, the ob-
servation of manifold can bring imprecision and obscureness in small set cases. Figure 4
shows a result of dimensionality reduction by LLE on a small set with 20 samples.

In Figure 4, regression method is used to obtain the three-dimensional curve of the
manifold and eight new points are sampled along the regressed curve in embedding. Be-
cause of the lack of mapping, we cannot know the corresponding source images of these
generated samples.

4 Establishing the Analytical Mapping for LLE Based
on Nonlinear Regression

In real-world applications, however, the samples are always sparse. How can the high-
dimensional structure be learned and the mapping established in small set cases? We con-
jecture that the mappings and the manifold of multi-pose face images in high-dimensional
space are similar for different persons when the same type ofhead rotation occurs. Based
on this, we propose solving the problem as followings. High-density multi-pose images
of some persons are sampled and used as the training set for extracting the common in-
formation of distributional structure and obtaining some knowledge of the mapping. Uti-
lizing the form of the high-dimensional curve as transcendental knowledge, the definite
mapping can be obtained with fewer multi-pose images of other persons. The detailed
learning method and algorithm are given as follows.

Suppose the observation data consist ofYj( j = 1,2..N), wherej is the index of sample
andN is the number of samples,Yj ∈ RD, Yj = [y1,y2, ....,yD, ]T , whereyi ∈ R(i = 1,2..D).



Figure 3: Dimensionality reduction by LLE of a face image sequence sampled when the
head rotates from left to right.

The projection ofYj by LLE algorithm isX j, Xi ∈ Rd, whered is the dimensionality of
embedded space.

For every dimensionality of observation the dataYj, it can be regressed as:

yi = fi(X). (6)

Thus the analytical mapping is described as:
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= F(X). (7)

Equation (7) gives the method of reconstruction and synthesis of high-dimensional
data. The following steps describe the learning model forfi(•) in detail.

Step 1: On a large training set, apply LLE to project face images to ad-dimensional
space. How to determine the value ofd is question need to consider firstly. The LLE
algorithm itself can only give the range of the value ofd, but not the precise value. Sam
T. Roweis has indicated that the intrinsic value ofd can be estimated by analyzing a
reciprocal cost function, in which reconstruction weightsderived from the embedding
vectorsXi are applied to the data pointsYi [10]. The detailed method, however, is not
described in that paper. Marzia Polito and Pietro Perona proposed in their paper that the
value ofd should be known in advance [19]. They believe that the value of d can be
determined by using other dimensionality reduction methods. We use ISOMAP to get the
value of the intrinsic dimensionality of a given data set. Figure 5 shows the relationship



Figure 4: Dimensionality reduction by LLE of a multi-pose face image set with 20 sam-
ples. Points denote true samples and asterisks denote generated samples obtained along
the regressed curve in embedding.

between dimensionality and residual variance of a given setapplying ISOMAP algorithm.
For more precision, the value ofd is chosen as 3 in our experiments.

We believe that the multi-pose face image sets of different persons share a similar
structure in observation space when their heads rotate in the same direction. Thus the
function fi(•) describing the process of dimensionality reduction of different persons has
similarities, such as the function form.

Step 2: The functionfi(•) is defined as

yi = fi(X) =
l

∑
j=1

αi jk(X ,X j)+ b, (8)

whereX j( j = 1,2, ..., l) is the training sample andl is the number of samples in training
set. The kernel functionk(X ,Xi) decides the property offi(•). The parameters areai j. In
this step, we have enough samples of different persons to learn the proper form offi(•).
Appropriate selection of the kernel function and its parameters will exhibit a good fit not
only on the training set but also on a test set with fewer samples.

In order to get useful information for function and parameter selection, it is necessary
to define a cost function to evaluate the performance of regression. We classify thel
samples in training set as two typesω1,ω2, l1 samples inω1 andl2 samples inω2 (l1+ l2 =
l). Samples inω1 are used for training to estimate the function form and parameters.
Samples inω2 are used to evaluate the performance of regression. We give the squared
error on the training set as follows:



Figure 5: The relationship between dimensionality and residual variance applying
ISOMAP.

ϕ(F) =
l2

∑
j=1

∥

∥Yj −F(X j)
∥

∥ Yj ∈ ω2, j = 1,2, ..., l2. (9)

Equation (9) can be used as a standard to choose proper kernelfunction and param-
eters. By experiments, polynomial function and radial basefunction (RBF) are suitable
kernels for functionfi(•). The two kinds of kernels are shown in (10) and (11).

k(X ,Xi) =< X ,Xi >
p
. (10)

k(X ,Xi) = e
−
‖X−Xi‖

2

2σ2 . (11)

In Equation (10),< X ,Xi >
p means p-norm ofX andXi. By this step, some useful

information about the functionfi(•) is obtained.
Step 3: After the form of the function and the proper kernel parameters are deter-

mined, these are regarded as a priori knowledge and the function learning is generalized
to the small sets. In this step, data in a small test set are projected to embedded space
by LLE. As a result, we have two small test sets.Ytest is the data of face images, which
is in high-dimensional space.Xtest is the corresponding point in lower-dimensional em-
bedding, which is the projection ofYtest by LLE. Utilizing the form of the functionfi(•)
obtained in step 2, the definite mapping for specific person can be learned by applying
the method of statistical learning theory on the small setsXtest andYtest . In this experi-
ment, SVR is an effective method for determining the parametersai j andb in function
fi(•) [20] [21] [22]. The series of functionsfi(•), denoting the reverse transform from
low-dimensional space to high-dimensional space, is obtained.



Step 4: In order to validate the results, we can use the analytical form Y = F(X)
to synthesize new face images from generated low-dimensional points. Firstly, the dis-
tributive curve of the embedded space samples is learned by regression methods, such
as SVR. Then new low-dimensional points can be sampled from the curve. For a new
low-dimensional sampleXnew, the corresponding high-dimensional data in image space
can be computed by the function learned before:

Ynew = F(Xnew) =
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Figure 6: Eight synthesized face images, which is corresponding to the generated three-
dimensional points in Figure 4.

Figure 4 shows a training set with only 20 true samples, the regression curve for this
set, and 8 generated samples in three-dimensional embedding (Every point represents
a projection of true image in the training set and every asterisk represents a generated
sample along the regression curve.). The eight synthesizedimages applying our method
are shown in Figure 6.

The experiment above is implemented on simulated face data.For more convictive
results, we constructed a real-world face images data, which includes four types (verti-
cal pose rotation, horizontal pose rotation and two kinds ofmixed rotations) of images
from 20 persons. Our method is used on these real-world face data. More examples of
synthesized images are displayed in Figures 7 and Figures 8.

Figure 7: Example1: synthesized images based on 20 real-world face images.



Figure 8: Example2: synthesized images based on 20 real-world face images.

Under practical conditions, many factors can affect the results of experiments. Pose
rotations are always accompanied by changes of expression and other uncertain factors.
The model, however, only considers the variety of pose, which restricts it from achieving
a better performance. As a result, as shown in Figures 7 and Figures 8, several synthesized
face images have flaws.

5 Conclusions

As an elegant method for dimensionality reduction, LLE can bring out the underlying
manifold of observation data in an embedded space, but lacksan effective mapping be-
tween source data and output data. In this paper, a nonlinearmethod is proposed to obtain
a definite mapping for LLE, which also achieves an analyticalrepresentation of the man-
ifold of high-dimensional data. By learning the common information from high-density
data sets in advance, methods of statistical learning theory are applied to establish the
mapping on small sets. Our experiments of synthesis for multi-pose face images prove
our idea and algorithm are correct and effective. Our work shows the significance that the
underlying manifold of high-dimensionality data can be analytically described with few
samples by applying NDR and small-set based learning methods.

There are, however, some open problems. In the future, we plan to establish a unified
model of pose changes not only for a specific person but also for a variety of human faces.
Other factors, such as expression and illumination, will also be considered. LLE has the
potential to be used for recognition. How can our method be applied to face recognition?
This is an issue that our ongoing research will address.
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