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Abstract

Locally Linear Embedding (LLE) is a nonlinear dimensiobateduction
method proposed recently. It can reveal the intrinsic nodahibf data, which
can't be provided by classical linear dimensionality retucmethods. The
application of LLE, however, is limited because of its ladkaomapping
between the observation and the low-dimensional outputhitnpaper, we
propose a method to establish an analytical mapping for Lhd \aalidate
its efficiency with the application in multi-pose face syedis. Furthermore,
through learning the similarity for the same kind of posergemode of
different persons, we generalize our method to small setscaith methods
of statistical learning theory. The experiments of mutisp face synthesis
on small sets prove that our idea and method are correct.

1 Introduction

Dimensionality reduction is an important and necessarpnoeessing of multidimen-
sional data, such as face images. There are four purposeslioa dimensionality of
observation data: (1) to compress the data to reduce stoeggedements; (2) to elimi-
nate noise; (3) to extract features from data for recogmitié) to project data to a lower-
dimensional space, especially a visualized space, so ascerd the distribution of data.
For face images, classical dimensionality reduction nashioclude Eigenface [1] , Inde-
pendent Component Analysis (ICA) [2, 3], Linear Discrintm&nalysis [4], and Local
Feature Analysis (LFA) [5, 6], etc. The linear methods h&egrtlimitations. Firstly, they
cannot reveal the intrinsic distribution of a given data Sstcondly, if there are changes
in pose, facial expression and illumination, the projetsionay not be appropriate and
the corresponding reconstruction error may be much higher.

Compared with linear dimensionality reduction methodsnlih@ar Dimensionality
Reduction (NDR) techniques yield better results. Kerreddd methods are important
nonlinear techniques. Among these, Kernel Principal Camepb Analysis [7], Kernel
Independent Component Analysis [8] and Kernel Discriménanalysis [9] have been
investigated and proven effective.
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LLE (Locally Linear Embedding) and ISOMAP are two other nettedeveloped non-
linear dimensionality reduction techniques. LLE maps theesvation data to a single
global coordinate system of lower dimensionality preseguwihe neighbor relationships
[10]. ISOMAP computes pair-wise distances in the geodesices of the manifold, and
then performs classical Multidimensional Scaling (MDSap data points from their
high-dimensional input space to low-dimensional coordinaf a nonlinear manifold
[11]. Both LLE and ISOMAP can reveal the underlying struetof data.

Although LLE and ISOMAP are effective dimensionality retian methods, there are
open problems. These two methods both lack a process foringapgtween observations
and embedded space. Yet mapping is very necessary for donality reduction in
many real-world problems, such as data compression. Thefiwblem to solve is how
to establish the mapping. Furthermore, in order to revealuhderlying manifold of
data, the two methods must be applied on large sets. Théwetdescription of revealed
manifold is indistinct and inconvincible in small set cadesmany examples of machine
learning, however, data is limited so that we must face ss®ilproblems. The second
problem is the issue of how to learn the analytical desaniptif manifold and the mapping
of a given high-dimensional small set.

In this study, we make use of multi-pose face images to rebethe two problems
above based on LLE. First, we propose an analytical methseidoan nonlinear regres-
sion to establish the process for mapping. Second, we dewelo method to adapt to
small sets by a priori learning and methods from statistealning theory. The method
is based on the idea that statistical learning theory is gmortant small-set learning
method, which is effective in many applications. If somestural information in high-
dimensional space can be obtained as transcendental ldgeylthe small-set learning
method can be used to reveal the true manifold with fewer f&snn the case of multi-
pose face images, we believe that the multi-pose face imeig@tdifferent persons share
a similar structure in observation space when their headderin the same direction.
Therefore we can obtain the structural information in hiiimensional space by learning
large sets of data for a few persons and then apply it to thaitggin small set cases.
We describe the learning method in detail and then validdkeaugh reconstruction and
synthesis of multi-pose face images based on small sets.

Matthew Brand established a nonlinear mapping from highedlisional sample space
to low-dimensional vector space, recovering a Cartesiandioate system for the mani-
fold from which the data is sampled [12]. The principle of tisthod is to first decom-
pose the data into locally linear low-dimensional patclentmerge them into a single
low-dimensional coordinate system and finally compute fodhvand reverse mappings
between samples and coordinate spaces. For constructimgapping, the method need
large sets to accomplish the training.

The method we propose in this paper is an appearance-bagieobmkn face recogni-
tion field, there are appearance-based methods publigiddas SLAM [13], Eigenfaces
[1] and lllumination Cone method [14]. They demonstratee plower of appearance-
based methods both in ease of implementation and in accugapecially lllumination
Cone method can synthesize faces after it learns a face 3D atey from a few face
images. However, there are three assumptions in lllumdna@ione method: The surface
is Lambertian, The object is convex, and the pose is fixed eovtdl. The important
difference of our method with lllumination Cone method iatttve focus on the common
law when different faces move. So we learn structural infatiam in high-dimensional



space with large data sets of a few faces. Then using thewstalimformation we learned

and a small data set of a different face we synthesize newirfizgages for this different

face. As a result, we need more face images before we syn¢haesiv face images for a
different face than Illumination Cone method does. Howgtlgs is a new way to study

reconstruction of multi-pose face images. We conclude ttexte are indeed common
laws when different faces move. And the common law can beeshaith other faces

reconstruction. In our experiments, we firstly used manytinpalse images of person A
to learn the knowledge of head movement. Then we appliedhtered knowledge to

construct analytical model for person B with fewer sampl@s.our experiments, about
20 samples are enough to construct new analytical modeldisop B.). Our objective

is to establish analytical mapping to describe the manidébldata set on small sets. Fur-
thermore, there are no Lambertian and convex assumptiang imethod. It makes our

method easy to use.

Other sections of the paper are organized as follows. Segtiof this paper gives
an overview of NDR. We mainly introduce the LLE algorithm asaime previous works
based on it. The analysis of dimensionality reduction oftrpdse face images applying
LLE is given in Section 3. This section also achieves a disiomsof the method. In
Section 4, a nonlinear regression method based on SuppaarMRegression (SVR) is
given to obtain the parametric mapping in small set cases r€hults of face image
synthesis based on small sets are shown. Our conclusiopsmided in the final section
of the paper.

2 An Effective Nonlinear Dimensionality Reduction
Method

Tenenbaum, Silva and Langford presented the nonlineandiimeality reduction method
ISOMAP in 2000 [11]. ISOMAP computes geodesic distance gbmanifold and then
applies Multidimensional Scale (MDS) to reduce dimensiibpaln fact, this method
maintains the data distribution manifold by preservinggeedesic distance between data.
Sam Roweis and Lawrence Saul implemented nonlinear dimmeaisty reduction by Lo-
cally Linear Embedding (LLE) [10]. LLE maps the high-diménrsl data to a single
global coordinate system in a manner that preserves thélnaiong relationships. The
two methods have been successfully applied to reduce therdinalities of artificial
data and real-world data, such as “Swiss roll” data and faages. In Reference [10],
an experiment of dimensionality reduction of face imagegeisionstrated. The intrinsic
dimension and structure of the data set, which includesgdmof facial expression and
pose, were discovered in the experiment. Other work, in vthie true manifold structure
of data is revealed, has also been conducted [15, 16]. DBa@®ste then developed the
Kernel Locally Linear Embedding method [17]. All these pioas applications of non-
linear dimensionality reduction mainly focused on datdysis.

As further background, the standard LLE algorithm is giveficdlows:

Suppose the observation data considtioéal-valued vector, i =1,...,N,Y; € R®,
sampled from some smooth underlying manifold.

Step 1: To compute the neighbors of each data point, we sklefiliek as the number
of nearest neighbors or the number of points in the superspidixed radius.

Step 2: Define neighbors representation cost function aatiegul:



. (1)

e(W) = Z

Yi— > WY
]

If Y; does not belong to the neighbors¥fWj = 0. Considering translation invari-
ance, we add this constraint:

> Wj=1. (2)

We can get the weightdf; that best linearly reconstruc¥ from its neighbors by
solving the constrained least-squares problem:

W =arg r\rg/ins(W). 3)
Step 3: Fixing weights, compute the d-dimensional embepdéttors{X;}i—1. N €

R, which are best reconstructed W;. This can be achieved by minimizing the follow-
ing cost function:

: (4)

eX) =3 ‘Xa — > WX
J

So solveX:
X= argn)w(ins(x). (5)

The details and proofs of this algorithm can be found in Refee [18].

There is no doubt that LLE is an efficient dimensionality retibn method. LLE,
however, lacks a process for mapping between the obsemgaditd the embedded space.
Thus, dimensionality reduction can only be implementedaming sets. The test data
can be projected to the embedded space. Because of thivalisage, the applications
of LLE are confined to the area of data analysis. In additiena &ind of local linear
method, LLE has the drawback that it should be based on lamele sets to achieve an
intuitive presentation of the nonlinear manifold.

3 Dimensionality Reduction of M ulti-pose Face | mages
by LLE

As a result of head rotation, the human face exhibits varidtulti-pose face images,
especially images formed as a result of horizontal andaadrtbtation, cause difficulty
in face recognition. Some examples of multi-pose face irmage shown in Figure 1. A
sequence of face images are obtained when the human hededimgotation with the
model from left to right or up to down. Figure 2 exhibits an geasequence with head
rotation from left to right.

Although the observation data are high dimensional, thénisit dimensionality of
some face images may be very low. In lower-dimensional spegecially visualized
space, it is easier for us to find the underlying structureugh observation. LLE is
applied to reduce the dimensionality of face images in opeément. In the experiment,
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Figure 1: Examples: multi-pose face images.
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Figure 2: A sequence of face images with head rotating frdhtdeight.

a sequence includes 160 images, sampled when the head rétigtere 3 shows the result
of dimensionality reduction by LLE on the sequence.

In Figure 3, the projected points by LLE algorithm scattemal a smooth curve and
the arrangement of points on the curve associates with thgao trend.

Although LLE is an efficient dimensionality reduction methdt lacks a process for
mapping between the observations and the embedded spaeeldition, the revealed
underlying manifold can only be observed subjectively. the applications of LLE are
confined to the area of data analysis. Furthermore, as a klodal linear method, the ob-
servation of manifold can bring imprecision and obscursiesmall set cases. Figure 4
shows a result of dimensionality reduction by LLE on a smetlvgith 20 samples.

In Figure 4, regression method is used to obtain the threwisional curve of the
manifold and eight new points are sampled along the regiess®e in embedding. Be-
cause of the lack of mapping, we cannot know the correspgrstinrce images of these
generated samples.

4 Establishing the Analytical Mapping for LL E Based
on Nonlinear Regression

In real-world applications, however, the samples are adwsparse. How can the high-
dimensional structure be learned and the mapping establistsmall set cases? We con-
jecture that the mappings and the manifold of multi-pose farages in high-dimensional
space are similar for different persons when the same typead rotation occurs. Based
on this, we propose solving the problem as followings. Highmsity multi-pose images
of some persons are sampled and used as the training setrfacteng the common in-
formation of distributional structure and obtaining sonmewledge of the mapping. Uti-
lizing the form of the high-dimensional curve as transcenaleknowledge, the definite
mapping can be obtained with fewer multi-pose images ofrgtleesons. The detailed
learning method and algorithm are given as follows.

Suppose the observation data consisfj¢f = 1,2..N), wherej is the index of sample
andN is the number of sample¥; € RP, Yj = [y1,¥2, ....,Yo,], wherey, € R(i = 1,2..D).



Dimensionality reduction by LLE of a face image sequence
(Head rotation from left to right)

Figure 3: Dimensionality reduction by LLE of a face imagewssuce sampled when the
head rotates from left to right.

The projection ofYj by LLE algorithm isXj, X € RY, whered is the dimensionality of
embedded space.
For every dimensionality of observation the d#tait can be regressed as:

yi = fi(X). (6)
Thus the analytical mapping is described as:
Y1 f1(X)
y=| Y2 | = | RO g, (7)
Yo fo(X)

Equation (7) gives the method of reconstruction and symheshigh-dimensional
data. The following steps describe the learning modefif@r) in detail.

Step 1: On a large training set, apply LLE to project face iesaip ad-dimensional
space. How to determine the valuedfis question need to consider firstly. The LLE
algorithm itself can only give the range of the valuedpbut not the precise value. Sam
T. Roweis has indicated that the intrinsic valuedotan be estimated by analyzing a
reciprocal cost function, in which reconstruction weighegived from the embedding
vectorsX; are applied to the data points[10]. The detailed method, however, is not
described in that paper. Marzia Polito and Pietro Peronpgsed in their paper that the
value ofd should be known in advance [19]. They believe that the vafué can be
determined by using other dimensionality reduction meshdte use ISOMAP to get the
value of the intrinsic dimensionality of a given data segufe 5 shows the relationship



*  Projected points by LLE in embedding (srmall set with 20 sarmples)
- Regressed curee in embedding
4 Sampled new points along the curve

Figure 4: Dimensionality reduction by LLE of a multi-poseéimage set with 20 sam-
ples. Points denote true samples and asterisks denoteatgguheamples obtained along
the regressed curve in embedding.

between dimensionality and residual variance of a giveaselying ISOMAP algorithm.
For more precision, the value dfis chosen as 3 in our experiments.

We believe that the multi-pose face image sets of differemsgns share a similar
structure in observation space when their heads rotateeisdime direction. Thus the
function f;(e) describing the process of dimensionality reduction ofedéht persons has
similarities, such as the function form.

Step 2: The functiorfj(e) is defined as

|
yi = fi(X) =3 aijk(X,X;)+b, (8)
=1

whereX;(j = 1,2,...,1) is the training sample arlds the number of samples in training
set. The kernel functiok(X,X;) decides the property df(e). The parameters agg;. In
this step, we have enough samples of different personsito fea proper form off(e).
Appropriate selection of the kernel function and its pargerewill exhibit a good fit not
only on the training set but also on a test set with fewer sampl

In order to get useful information for function and parametdection, it is necessary
to define a cost function to evaluate the performance of ssgpe. We classify thé
samples in training set as two typ®s, wy, |1 samples i andl, samplesinw, (I1+12 =
). Samples inw, are used for training to estimate the function form and patars.
Samples iy, are used to evaluate the performance of regression. We lggvequared
error on the training set as follows:
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Equation (9) can be used as a standard to choose proper kemagbn and param-
eters. By experiments, polynomial function and radial Hasetion (RBF) are suitable
kernels for functionf;(e). The two kinds of kernels are shown in (10) and (11).

K(X, %) =< X, X >P. (10)
_Ix=xl?
k(X,X)=e 22 . (11)

In Equation (10)< X,X; >P means p-norm oK andX;. By this step, some useful
information about the functiofy(e) is obtained.

Step 3: After the form of the function and the proper kernebpseters are deter-
mined, these are regarded as a priori knowledge and theidarletarning is generalized
to the small sets. In this step, data in a small test set ajeqteal to embedded space
by LLE. As a result, we have two small test se¥ggis the data of face images, which
is in high-dimensional spaceXeq is the corresponding point in lower-dimensional em-
bedding, which is the projection dfet by LLE. Utilizing the form of the functiorf;(e)
obtained in step 2, the definite mapping for specific personbealearned by applying
the method of statistical learning theory on the small ¥ets andYeg. In this experi-
ment, SVR is an effective method for determining the paranset; andb in function
fi(e) [20] [21] [22]. The series of function§(e), denoting the reverse transform from
low-dimensional space to high-dimensional space, is nbthi



Step 4: In order to validate the results, we can use the acalformY = F(X)
to synthesize new face images from generated low-dimeakpwints. Firstly, the dis-
tributive curve of the embedded space samples is learneddrgssion methods, such
as SVR. Then new low-dimensional points can be sampled frencurve. For a new
low-dimensional sampl&ey, the corresponding high-dimensional data in image space
can be computed by the function learned before:

Ynew1 ] f1(Xnew)

Yoew = F (Xnaw) = | 72 (12)

Figure 6: Eight synthesized face images, which is corredipgrto the generated three-
dimensional points in Figure 4.

Figure 4 shows a training set with only 20 true samples, theession curve for this
set, and 8 generated samples in three-dimensional emlae(ieNery point represents
a projection of true image in the training set and every asltgepresents a generated
sample along the regression curve.). The eight synthesizages applying our method
are shown in Figure 6.

The experiment above is implemented on simulated face daiamore convictive
results, we constructed a real-world face images data,hwihidudes four types (verti-
cal pose rotation, horizontal pose rotation and two kindmbded rotations) of images
from 20 persons. Our method is used on these real-world fatee d/ore examples of
synthesized images are displayed in Figures 7 and Figures 8.
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Figure 7: Examplel: synthesized images based on 20 redd-feme images.



Figure 8: Example2: synthesized images based on 20 re#dfeae images.

Under practical conditions, many factors can affect thelte®f experiments. Pose
rotations are always accompanied by changes of expressibother uncertain factors.
The model, however, only considers the variety of pose, wiestricts it from achieving
a better performance. As aresult, as shown in Figures 7 uiés 8, several synthesized
face images have flaws.

5 Conclusions

As an elegant method for dimensionality reduction, LLE caindout the underlying
manifold of observation data in an embedded space, but latlkdfective mapping be-
tween source data and output data. In this paper, a nonlimetiiod is proposed to obtain
a definite mapping for LLE, which also achieves an analytieptesentation of the man-
ifold of high-dimensional data. By learning the common mfi@ation from high-density
data sets in advance, methods of statistical learning yhaa applied to establish the
mapping on small sets. Our experiments of synthesis forifpate face images prove
our idea and algorithm are correct and effective. Our wodunstthe significance that the
underlying manifold of high-dimensionality data can belgtieally described with few
samples by applying NDR and small-set based learning method

There are, however, some open problems. In the future, wetplestablish a unified
model of pose changes not only for a specific person but atsovfariety of human faces.
Other factors, such as expression and illumination, wdbdle considered. LLE has the
potential to be used for recognition. How can our method Ipdieghto face recognition?
This is an issue that our ongoing research will address.
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