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Abstract

In this paper, we propose a method to estimate 3D shape of deformable plas-
tic tapes from multiple camera images. In this method, the tape is modeled
as serial connection of multiple rectangular plates, where the size of each
plate is previously known and node angles of between plates represent the
shape of the object. The node angles of the object are estimated by 2D sil-
houette shapes taken in the multiple images. The estimation is performed by
minimizing the difference of the silhouette shapes between the input images
and synthesized images of the model shape. For demonstrating the proposed
method, 3D shape of a tape is estimated with two camera images. The ac-
curacy of the estimation is sufficient for making the assembling robot in our
plant to handle the tape. Computation time is also sufficiently short for ap-
plying the proposed algorithm in the assembling plant.

1 Introduction

In this paper, we propose a method to estimate 3D shape of deformable tapes from mul-
tiple view images. Vision systems are recently used for assembling products, inspection
of products, etc. in automated factories. In our assembling plant, some parts are covered
with plastic tape for surface protection. The tape must be taken off before the parts are
assembled. We aim to build a vision system that can detect the position and shape of the
tape for making a robot take off the tape from a assembled parts. Since the shape and pose
of the tape is flexible, it is difficult to apply the methods for pose and position detection
of rigid object, which are extensively studied for bin picking with robots [5] and so on.
If the object is rigid, estimation of rotation and translation (6DOFs) of the object is suffi-
cient to make the robot handle the object as long as the robot previously knows the object
shape. However, if the object is non-rigid, not only the object rotation and translation, but
also the shape of the object must be estimated in 3D, because the shape changes by the
object motion. For reducing the DOFs in recovery of the object shape, 3D shape model
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with some DOFs is generally introduced for non-rigid object shape recovery [1, 4, 6]. In
this paper, our objects are deformable plastic tapes. For modeling of such tape shape, we
introduce skeleton-based model, in which multiple rectangular planar patch with known
width and length are connected at nodes with 3DOFs rotation.

For estimating the rotation angles at the nodes in the model shape, we use multi-
ple cameras so that 3D information of the scene can be captured. In general, point-
correspondence between multiple cameras (at least two cameras) is required for obtaining
3D information of the scene. Determination of such pixel-correspondence between dif-
ferent camera images is extensively studied in computer vision research field [3, 9, 10].
However, it is not easy problem especially if there are few features in the images, or a part
of the object is occluded. The tape of our object has flat texture surface, so it is very dif-
ficult to determine corresponding points between different views. Only silhouette image
can be obtained from input images in our case. Therefore, instead of determining corre-
sponding feature pointes between views, we take analysis-by-synthesis based approach,
in which model parameters that give closest silhouette model images to the input images
are searched.

There are some related researches to the presented paper. Torresani et.al. [11] pro-
posed a method for tracking non-rigid object from image sequence by using rank con-
straint. This method requires some number of the feature points to be detected and tracked
through input image sequence. Smith [7] proposed a method for manipulation planning
for non-rigid object based on psychological studies. Although the focus of Smith’s re-
search is different from shape and pose estimation of non-rigid object, he suggests one
alternative approach for making robot to handle non-rigid object. Sudo et.al. [8] pro-
posed a method for modeling shape and elastic property of a string from images of differ-
ent pose and shape string. They use a skeleton-based model in which a number of short
linear strings are connected at some nodes. Their future application is representation of
non-rigid object in computer graphics, rather than handling non-rigid object.

2 Estimation Method

Our aim is to build an intelligent robot system for automatic handling of thin deformable
objects such as films and tapes in assembling plants. In this paper, we deal with a robot
system, which grasps a tape with bending and twisting deformation, and without elastic
deformation. The one side of the tape is fixed and the other freely moves. In order to
control a robot to handle the tape, position, pose, and surface normal of the tip of the tape
object must be measured. Figure 1 shows the scheme of the system.

We represent the structure of a thin deformable object by skeleton-based model. The
model parameters are optimized by an evaluation function calculated as silhouette match-
ing between a 3D model image and an object image.

2.1 3D Modeling

Figure 2 shows the 3D model structure of a thin deformable object. In order to reduce the
number of 3D model parameters, we adopt skeleton-based model represented by nodes,
trunks and stems. Each trunk is connected to each node on the center of an object. A
pair of stems is connected with each node and rotates around trunk-axis. In fact, a pair
of stems is represented with curve segments and the curvature changes according to twist
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Figure 1: System arrangement.
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Figure 2: 3D model structure of a thin de-
formable ojbect.

deformation. In this paper, we assume that twist deformation is small and a pair of stems
is linear.

PCi, PLi and PRi denote initial coordinates of each node and tips of stems, which are
initialized by coordinates value of fixed node PC0 and length of each trunk L1∼n and width
of each stem W1∼n. Values of L1∼n and W1∼n are initialized manually with object size
measured in advance. Coordinates values of each node and tip of stems are transformed
by the following translation matrixes:

P′(x′i ,y
′
i ,z
′
i)

T = RθziRθyiRθxiP(xi ,yi ,zi)T (1)

whereθxi, θyi, θzi denote rotation angles about the X, Y, Z-axis. Bending is represented
by the rotation matrixRθyi and twisting is represented by the rotation matricesRθxi and
Rθzi. Each rotation matrix is given by:

Rθx =




1 0 0
0 cosθx −sinθx

0 sinθx cosθx


 (2)

Rθy =




cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy


 (3)

Rθz =




cosθz −sinθz 0
sinθz cosθz 0

0 0 1


 (4)

2.2 3D Model Projection and Camera Calibration

We generate a 3D shape model image to make a comparison with an object image. The
projection image is represented by linkage of tips of stems whose 2D coordinates are
calculated from 3D coordinates using camera parameters. The outline is described on an
image plane filled with black, and then pixels inside of the outline are filled with white. It
is processed by graphic library functions.

For accurate 3D model projection, it is important to obtain extrinsic and intrinsic
parameters of cameras. We adopt Zhang’s calibration method [12] to get these camera



parameters. This method calculates all camera parameters from already known 3D points
in world coordinates and 2D points coordinates in image coordinates.

When we apply a machine vision system to a robot control system, we need to corre-
spond between world coordinates and robot coordinates exactly. In this paper, we give 3D
points using for camera calibration as robot coordinates, and these points are indicated by
a cross pattern plate attached to a robot arm.

2.3 Model Optimization

For deformable tapes, it is difficult to extract local features such as edge, vertex and
surface, used for reconstruction 3D features, which are occluded by bending and twisting
deformation.

The proposed estimation method is based on silhouette image matching between a
3D model image and an object image that does not need to extract of local features. The
3D model parameters are estimated by a multidimensional minimization method with an
evaluation function defined by silhouette matching.

The evaluation function for silhouette matching s which denote the similarity between
the object imagef (u,v) and the model imageg(u,v) is defined as:

s= ∑
u

∑
v

f (u,v)⊕g(u,v) (5)

f (u,v)⊕g(u,v) =
{

0, f (u,v) = g(u,v)
const, f (u,v) 6= g(u,v) (6)

where,⊕ denotes exclusive-OR between left and right term.s denotes the sum of these
calculation values at each coordinates. The smallers is, the more similar the two images
are.

The evaluation functions is influenced by percentage of the object’s area in the image.
Thens is normalized by the object’s areard in the image as:

s′ = s/rd (7)

In this case, the relation between model parametersθx, θy,θz and the evaluation func-
tion s′ is represented as a nonlinear programming problem. However, the description
of the relation is not available. We use the Downhill Simplex method [2] originated by
Nelder and Mead. This method requires only an evaluation function and not of its deriva-
tives. It is simple algorithm and very robust to noise.

3 Strategy of Robust and High Performance Estimation

3.1 Sequential Optimization

The set of model parameters composed ofn nodes is represented byN(= 3n) dimensions
vector~V as:

~V = {θx1,θy1,θz1,θx2,θy2,θz2, · · · · · · ,θxn,θyn,θzn} (8)

The Downhill Simplex method optimizes the value of parameters (N dimensions) by
using the simplex which is a convex withN + 1 vertices inN dimensional search space.
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Figure 3: Images for Sequential Optimizatin. (a) An object image for node P1. (b) A
result model image of node P1. (c) An object image for node P2. ( the result model image
is deleted from the object image.)

The evaluation values at the vertices of the simplex determine the next searching point of
the optimum. This computation is iterated until the evaluation value converges. In each
step of the iteration, the positions of the vertices of the simplex are updated. At the first
step of the iteration, one of the vertices of the initial simplex is given by the initial guess
model parameters~V0, and the positions for the other vertices are

~Vi =~V0 +λi~ei , (9)

where the~ei ’s areN unit vectors, and whereλi ’s are constant coefficient values for updat-
ing.

In order to improve system performance, we take a sequential optimization strategy
that optimizes in order of the node number from P1 to Pn. Only three parameters at
one node are optimized in one time. This strategy can reduce the number of updating
variables. Then the vector to be optimized can be reduced as:

~V ′
i = {θxi,θyi,θzi} (10)

In the sequential method, each 3D model image doesn’t correspond to the object im-
age. Each 3D model image only occupies a part of the object image. Therefore the
minimum value of the evaluation function doesn’t become zero. Although, there is a ten-
dency that the correspondence of each 3D model to object image is so high that the value
of evaluation function becomes smaller. We use the expression 5 - 7 as it is. Before
estimation of node Pi , the region of result model image of node Pi−1 is deleted from the
object image. (Figure 3)

3.2 Correspondence of Multiple Images

This method is able to estimate 3D shape of a thin deformable object by a monocular im-
age. Actually, this method can be well adapted to deformation about U-V-axis directions
in object image coordinates (X-Z-axis directions in 3D model coordinates). However, it
is difficult to estimate accurately in depth direction of a camera.

In order to improve estimation accuracy, we use multiple camera images. In case of
usingn cameras, the evaluation function is described by the following expression:

s′ =

√(
s1

rd1

)2

+
(

s2

rd2

)2

+ · · ·+
(

sn

rdn

)2

(11)



wheres′ denotes the sum of the area of exclusive-OR calculated from multiple images.
This method acquires a result equivalent to stereo matching without extraction and

corresponding of local features from object images.

4 Experiments and Discussion

4.1 Experimental results

Table 1 shows experimental specifications. In order to perform the presented estimation
method, we used a rectangle tape that flexibly deformed.

Figure 4 shows some of the input images from camera–1 and camera–2 that these
poses are set at random. We applied our method to these images in above initial condition.
The 3D wire frame model images are overlaid by red line. 2D image points for overlaid
are calculated from 3D points in the world coordinates of nodes and tip of stems with
estimated parametersθx, θy, θz.

It can be seen that result shapes of the 3D model almost correspond with contour of
the sample tape on all images. The pose and shape of the object is successfully estimated
even if the feature correspondence between two images cannot easily be taken because of
self-occlusion, especially in the images (e) where the left image looks almost a line, the
images (g) where the object bends greatly, and the images (h) where the back side appears
by twisting.

Figure 5 shows results of 3D reconstruction for the case of the images (e) and (h)
using the usual stereo-matching method which search of corresponding features between
two images. By bending and twisting deformation, it cannot reconstruct 3D shape and
pose of the object. In the image (e), it cannot correspond vertexes or shapes in the tip
of the object. In the image (h), the 3D reconstruction result is incorrect that describes
crossed shape. Alternatively, the presented method can reconstructs 3D shape and pose
of these images. This result shows that the presented method is applicable for occluded
conditions that cannot obtain feature correspondence.

To investigate the result further, we show error between true coordinates data and esti-
mated coordinates data of node P5 located in the tip of the object by following expression:

Camera Number 2
Resolution W640× H480pixel
View W280× H210mm

Distance cameras — tape 600mm
camera–1 — camera–2 400mm

Tape L150× W30mm
Model Nodes 6（P0 is fixed）

Trunks L=30mm
Stems L=15mm

Computer Pentium4 3.0GHz

Table 1: Experimental specifications.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: The input and result images. Estimation result is drawn on the input images
from camera–1(left) and camera–2(right).

camera–1 camera–2 Result(front view) Result(side view)

Figure 5: Resutls of 3D reconstruction by the usual method. (corresponding features with
stereo camera)
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Figure 6: Error between true data and
estimated data.
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Figure 7: Error between true data and
estimated data. (Re-calculation)

e=
√

(xe−xt)2 +(ye−yt)2 +(ze−zt)2 (12)

where (xe, ye, ze) denotes an estimated coordinates, and (xt , yt , zt) denotes a true coor-
dinates of node P5 (Figure 6). We acquired a true coordinates from the robot controller
when directing with the thin needle attached at the tip of the robot arm. The error is within
the limited of 20mm in all images.

On a multidimensional minimization problem, a solution may stagnate in a local min-
imum. In order to escape from a local minimum, it is shown validity of re-initialization by
a claimed minimum and re-calculation. In the Downhill Simplex method, we reinitialize
N of theN+1 vertices of the simplex again by the expression 9, withP0 being one of the
vertices of the claimed minimum. Figure 7 shows the error by re-calculation. The error is
within the limited of 10mm in all images. This result shows that it is efficient to calculate
twice for high accuracy. However, it takes twice calculation time. We need to decide
estimation times or model parameters according to a specification of a target system.

In this experiment, it took approximately one second for estimation on a Pentium4–
3.0GHz machine. This is enough to use this method for a robot control system in assem-
bling plants.

4.2 Estimation with Multiple Views

We tried estimation by using three cameras. One more camera (camera–3) is set about
400mm above camera–1. Figure 8 shows result images by using two cameras (camera–
1,2) and three cameras (camera–1,2,3). In the result by using two cameras, the obtained
3D shapes are almost same with the tape images on camera–1 and camera–2. The pro-
jected shape on the camera–3 image doesn’t fit to the tape image. However, in the result
by using three cameras, the obtained 3D shapes fit to the tape image on all camera images.

Figure 9 shows error between true coordinates data and estimated coordinates data in
each node. The error decreases in the node P2 to P4 by increasing the number of cameras.
This result shoes that this method can estimate over the whole tape by increasing the
number of cameras.

5 Conclusion

We have proposed an original and efficient method for 3D shape and pose estimation of
thin deformable objects like a plastic tape. For decreasing the number of model parame-



camera–1 camera–2 camera–3
(a) Result images by using two cameras (camera–1,2).

camera–1 camera–2 camera–3
(b) Result images by using three cameras (camera–1,2,3).

Figure 8: Result images by using two cameras and three cameras.
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Figure 9: Error between true data and estimated data in each node.

ters, we represented deformation of the object by nodes, trunks and stems rotation. The
model parameters are optimized by an evaluation function that is calculated as a silhou-
ette matching area between an input image and a synthesized image of a model shape.
Accurate 3D shape estimation is achieved using the multiple camera images and iterative
optimization.

The presented experimental results show that our method is able to estimate defor-
mation accurately and robust to occlusions in the situation that feature correspondence
cannot be taken between camera images. Further, our method is sufficient for making a
robot control system in assembling plants.
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