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Abstract

Pose evaluation is a fundamental issue in image processing and computer
vision. In this paper, we propose a new method called BCE for pose evalu-
ation based on Bayesian classification error. Various image cues are incor-
porated to depict an object including object shape, side region statistics and
temporal information. Then a PEF (Pose Evaluation Function) is constructed
based on Bayesian classification error, and an efficient algorithm to calculate
it is developed. We test our new method with real outdoor image sequences,
and use two criteria to compare it with two other representative ones. It is
shown that our new method leads to better performance with respect to local-
ization accuracy and robustness against general clutter and occlusion.

1 Introduction

Tracking can be cast as an attempt to find the optimal estimation of the state in a discrete-
time dynamic system [11]. LetXt be the state of the object andZt the observation at time
t. From the Bayesian point of view, it is required to construct thea posterioriprobability
of Xt :

p(Xt | Z1:t) = p(Zt | Xt)p(Xt | Z1:t−1)/p(Zt | Z1:t−1) (1)

whereZ1:t is {Zi | i = 1, . . . , t}, p(Zt | Xt) is the image likelihood,p(Xt | Z1:t−1) is the
prediction ofXt , and p(Zt | Z1:t−1) is typically treated as a constant. So tracking is a
maximuma posteriori(MAP) problem to searchXt which maximizesp(Xt | Z1:t).

There are two main classes of approaches computing the optimal Bayesian solution:
one is Kalman filter [6] and the other is particle filter [1]. For whatever tracking filters
we use, the image likelihoodp(Zt | Xt) is absolutely necessary. We always adopt some
metrics, instead of the image likelihood, to evaluate the goodness-of-fit between the given
state and the image data. This process is also called pose evaluation. Pose evaluation
is very important because it can heavily affect the performance of the tracker in terms
of accuracy, robustness and efficiency. With respect to accuracy, a simple but powerful
argument is that if there is always a great bias between the extremum of the PEF and the
true pose, what an elaborate update module or tracking filter can do is to makeXt stably
converge at a wrong point.

The reason why we only focus on pose evaluation in this paper is that we think: al-
though many excellent methods have been proposed for object tracking, it still seems that
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pose evaluation has not received enough attention, and need to be studied further (i.e.,
about localization accuracy). In fact, pose evaluation is closely related with pose refine-
ment and thus difficult to improve. A slight extension of the PEF may be more reasonable,
but on the other hand, may sharply increase the difficulty of pose refinement. That is an
important reason why most pose evaluation methods would rather only use simple metric
such as distance error than exploit more information.

In this paper, we propose a method for pose evaluation based on Bayesian classifi-
cation error (BCE). We depict an object using shape model, side region and temporal
information. The concept of classification in pattern recognition is introduced here and
then the PEF is constructed based on BCE. Using two criteria we test and compare the
method with two other pose evaluation methods under various complex conditions, and
it is shown that our new method leads to better performance with respect to localization
accuracy and robustness against general clutter and occlusion.

2 Related Work

Here we mainly review the approaches for pose evaluation based on 3D models. There
are two main categories: one is with geometric primitive extraction and the other without
geometric primitive extraction. The former is classical and widely used [10, 7, 5, 15,
3]. The distance error can be in the form of point-to-point [5], point-to-line [15, 3],
or line-to-line [10, 7]. However, the methods based on the distance error seem simple
and intuitive and have inherent shortcomings: the process of primitive extraction and
grouping is computationally expensive; the extracted primitives are easily unstable due to
occlusion, clutter and noise, and so on.

To overcome the above shortcomings, a few excellent methods without primitive ex-
action have been proposed. In Iconic algorithm [14], directional derivatives of the image
intensities besides the projected modal lines are combined into the pose evaluation func-
tion (PEF) in a statistical framework. This method is very fast but the curve of the PEF
is not smooth and the PEF is hard to be refined by gradient-based optimization method.
Alternatively, Kollnig et al. [8] estimate pose parameters by directly matching polyhedral
models with the norms of synthetic gradients to image gradients. Haag et al. [4] improve
their previous work by combining edge element and optical flow estimates. However,
sometime optical flow constraint is violated because there are often strong light reflexes
and shadows on the very smooth surfaces of vehicles. In addition, for investigating the
limits of model-based methods, they do not emphasize the computational cost.

On contrast to 3D model based methods, there are much more strategies adopted by
the approaches that work purely in the picture domain. We attempt to introduce some of
these strategies into our 3D model based methods. There are two main 2D approaches.
One is based on region information including texture or motion properties [13]. The other
is based on boundary information, which is usually implemented using active contour
models [12]. In addition, there are some valuable attempts in integrating the region and
boundary information under a common framework [12, 16].



3 Object Representation

In object tracking, the class of methods based on 3D models provides a powerful and
natural way to exploit prior knowledge of the shape and appearance of specific objects.
We adopt this basic idea in our work [15, 14]. Camera models (i.e., intrinsic and extrinsic
camera parameters) and object models (i.e., 3D geometric descriptions of vehicles) are
established off-line. In model coordinate system, letL(3) be the set of 3D line segments
that outlines the shape of the object. Given pose parameterP, L(3) is projected onto the
2D image plane to obtain a set of 2D line segments of the objectL(2). Furthermore,L(2)

is sampled at a fixed interval to obtain a set of points as shown in Figure 1:S= {S(i) | i =
1, . . . ,M}. The relationship amongL(3), L(2) andScan be summarized as the simplified

mapping:L(3) P−→L(2)sampling−→ S.
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Figure 1: Object representation. White
lines are the model projectionL(2). For one
sample pointS(i), there is a rectangularR(i)

inside the object. More information about
the α −O− β coordinate system is indi-
cated in Fig. 2.
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Figure 2: Information aroundS. S is a
sample point shown in Fig. 1. Theβ -axis
axis is parallel to the projected line from
L(2), and the linel coincides with the im-
age edge direction of the object nearS. ω
is the angle between two lines.

The statistic information of the regions located inside the boundary of the object is also
considered. As shown in Figure 1, for each sample pointS(i), there is a small rectangular
regionR(i) on the object. BecauseR(i) only occupies very small area of the object, we can
give a reasonable assumption that there is no illumination change inR(i) and the variation
of the intensity withinR(i) is due to physical white noise. Therefore we can model the
intensity withinR(i) as a Gaussian distribution with meanµ(i) and standard deviationσ (i).
In RGB space,µ(i) andσ (i) are in the form of matrix. So given the poseP, the projection
of the objectOP can be represented by the following:

OP = {(S(i),µ(i),σ (i)) | i = 1, . . . ,N} (2)

Note that the size ofR(i) should be chosen modestly, for too small size will be inad-
equate for training(µ(i),σ (i)), and too large size will violate the Gaussian assumption.
Here we let the size ofR(i) be 8*8 experientially.



4 Bayesian Classification Error

Now we focus on a pointS(i) of OP , and for simplicity all the superscripts(i) are omitted
in this section. Figure 2 is obtained by enlarging the local area around the pointS(i). We
define theα−O−β coordinate system as shown in Figure 2. Theβ -axis axis is parallel to
the projected model line fromL(2), and the linel coincides with the image edge direction
of the object nearS. The coordinates ofSare(v,0). R1 andR2 are two small rectangular
regions besideS, andB andF represents the background and the foreground, respectively.
Let f (α,β ) be the intensity at(α,β ), thenXB = { f (α,β ) | (α,β ) ∈ B}, andXF , XR1,
andXR2 have similar definitions. According to the analysis in Section 3, we assume that
XB andXF are normally distributed with parameters(µB,σB) and(µF ,σF), respectively.

Now the key problem is how to measure the discriminabilities ofXR1 andXR2 in a
suitable metric. Here we apply hypothesis test and use Bayesian classification error (BCE)
as the metric. This idea is similar to that of Basman’s work on region segmentation and
corer detection [2]. The difference lies in the definition of hypothesis. We define two
hypotheses. LetH0 benull hypothesisandH1 alternative hypothesis.

{
H0 = {S∈ l ∩ω = 0} or H0 = {R1 = F ∩R2 = B
H1 = {S 6∈ l ∪ω 6= 0} (3)

whereω is the angle betweenl and the axisβ . H0 has explicit meaning that the pro-
jected model line whereS lies coincides with the image edge of the object, and therefore
R1 belongs to the foreground andR2 background. We use BCE to measure the discrim-
inabilities of XR1 and XR2. It is clear that the discriminabilities reflect the confidence
of H0. Under hypothesisH0, XR1 ∼ N(µ1,σ1) andXR2 ∼ N(µ2,σ2), where(µ1,σ1) and
(µ2,σ2) are approximated by their unbiased estimates learnt fromXR1 andXR2. Thus BCE
E = (µ1,σ1,µ2,σ2) would be calculated [11].

It is a fundamental issue that whether BCEE can be a reasonable metric for pose
evaluation or not. In fact, given the same task and classifier, the value of BCEE is
mainly determined by two conditions: the selection of the data set for training and the
assumed statistical model of the distribution. In our problem, they are essentially related
to the position ofS, and further to the quality of the given poseP. There is a clear
chain that the better the given poseP, the better the two conditions are satisfied, the
more(µ1,σ1) and(µ2,σ2) are similar to(µB,σB) and(µF ,σF), and finally the smaller
BCE E = (µ1,σ1,µ2,σ2) is. SoE reflects the reliability ofH0 and will converge atE =
(µB,σB,µF ,σF) that is the minimum corresponding to the best pointSand the best pose
P.

The above analysis could explicitly be demonstrated by the experiments shown in
Figure 3. First we synthesize an image consisting of two parts: the background and
the foreground whose intensities are modelled as Gaussian distributions with parameters
(µB = 145,σB = 15) and(µF = 160,σF = 10) respectively. Then we rotate theβ -axis
(marked byω in Figure 3(a)), and translate the pointS(marked byd in Figure 3(b)), and
execute both rotation and translation simultaneously (shown in Figure 3(c)). We plot their
BCE E shown in Figure 3(d), 3(e), and 3(f). From Figure 3(e), and 3(f), we can see that
even when the foreground and background are very similar with lots of noise, the curves
are still comparably smooth and have conspicuous peaks corresponding to the true pose
exactly.
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Figure 3: Simulated tests and results of BCE curves

5 PEF Construction
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Figure 4: Bayesian classification error in a general case. The shadow area indicates the
value of BCE

BCE is only theoretical but not practical to compute except in very special cases. Here
we design an efficient scheme to tackle the problem of computing BCE. In general, BCE
is formulated as:

E =
∫

ℜ1

p(X | R2)P(R2)dX+
∫

ℜ2

p(X | R1)P(R1)dX (4)

whereℜ1 andℜ2 are the decision areas using Bayesian classifier, andP(R1) andP(R2)
are prior probability. In our problem, we have:

P(R1) = P(R2) = 0.5 (5)

P(X | R1) = gµ1,σ1(X) P(X | R2) = gµ2,σ2(X) (6)



gµ,σ (X) = (
√

2πσ)−1exp{−0.5(X−µ)2/σ2} (7)

It is difficult to determineℜ1 andℜ2 in an explicit way. Here, we first analyze a spe-
cial case (shown in Figure 4), and then give general procedures to dynamically compute
E (shown in Table 1). If the curves of the two Gaussian functions have two cross points
in [0,255], we haveℜ1 = [0,k1]∪ [k2,255] andℜ2 = [k1,k2], wherek1 andk2 are the so-
lutions of the equationgµ1,σ1(X) = gµ2,σ2(X), which is equivalent toAX2 +BX+C = 0
where 




A = σ2
1 −σ2

2
B = 2µ1σ2

2 −2µ2σ2
1

C = 2σ2
1 σ2

2 ln(σ2/σ1)+ µ2
2σ2

1 −µ2
1σ2

2

(8)

In order to determineℜ1 andℜ2, two things must be done: one is to calculate the
solutionsk1 and k2; and the other is to make the relationship clear amonggµ1,σ1(X),
gµ2,σ2(X), 0, 255,k1 andk2. From Figure 4, we find a useful cue that the two functions
are integrated by turns. According to that, we implement a dynamic method to determine
the expression ofE as shown in Table 1.

From the computational viewpoint, Equation 9 has at least two advantages:

• The basic component ise=
∫

gµ,σ (X), which can be obtained directly by looking
up a table and make pose evaluation efficient.

• ∂e/∂ µ and∂e/∂σ can be worked out, so we can calculate the gradient ofE for
pose refinement.

Table 1: The procedures of computingE
Input : ( µ1,σ1,µ2,σ2 ).
Output : BCE valueE.
Step1: Computek1 andk2 from gµ1,σ1(X) = gµ2,σ2(X). Let η ∈ {1,2} be the number of
the solutions. Note that whenk1 = k2, η = 1.
Step2: Maybe some solutions do not in[0,255]. Within [0,255], there areξ ∈ {0, . . . ,η}
solutions .Then we obtain:k0 = 0 < k1 < .. . < kξ < kξ+1 = 255.
Step3: Setλ = k1/2, and ifgµ1,σ1(λ ) > gµ2,σ2(λ ),exchangeµ1 with µ2 andσ1 with σ1.
Step4: Calculate:

E =
ξ

∑
j=0

∫ k j+1

k j

g(( j+1)mod2)
µ1,σ1 (X)∗g( jmod2)

µ2,σ2 (X)dX (9)

So whenj is an even number, the integrand isgµ1,σ1(X), and whenj is an odd number,
the integrand isgµ2,σ2(X).

Finally, under the widely used assumption [14, 4] that all the contour points are inde-
pendent, the Bayesian Errors of these points in the setSare combined in the logarithmic
way:

E(P) =
N

∑
i=1

ln(E(i)) (10)



Under the visual consistency assumption [12], that is the observed intensities of the
same position of the object at timet and timet−1 should be the same if there is no illumi-
nation change, the temporal information is considered and Equation 10 can be extended
into:

E(Pi) =
N

∑
i=1

ln(E(i)
t (µ(i)

1,t ,σ
(i)
1,t ,µ(i)

2,t ,σ
(i)
2,t ) · (1−E(i)

t (µ(i)
1,t ,σ

(i)
1,t ,µ(i)

F,t−1,σ
(i)
F,t−1))) (11)

where(µ(i)
F,t−1,σ

(i)
F,t−1) is obtained from the tracking result at timet−1.

6 Experiments
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Figure 5: Real world scene

We apply our method to road vehicle localization in the context of visual surveillance.
A part of the image sequence for test shown in Figure 5, is with complex conditions,
e.g. illumination variation, clutter with foliage and branches, and occlusion by buildings
and vehicles (The white curves indicate the object vehicles). The sequence is much more
challenging than the standard one provided by PETS’2000. And it is similar to or even
more complex than that in the previous work [4, 14, 15]. .

For comparison, we select two other methods: PLS [15] and Iconic [14]. The reason
for this selection is that the former is our previous work based on primitive extraction,
and the latter is the excellent work from the VIEWS group of Reading University based
on no primitive extraction. We implemented the three algorithms (Iconic, PLS and BCE)
by Visual C++ 6.0 on one 866MHz CPU.

Under GPC (Ground Plane Constraint) [14], the poseP of the vehicle is comprised of
transnational parametersx andy and one rotational parameterθ . The continuous PEF is
computed at different poses, and then depicted as a discrete set:

{E(Pi, j,k) | −10≤ i, j,k≤+10} (12)



wherePi, j,k = (x∗+ iλ ,y∗+ iλ ,θ ∗+k)T , andP∗ = (x∗,y∗,θ ∗)T is the ”true” pose deter-
mined by eye [14], andλ is the fixed interval for sampling the transnational parameters.
In the 3D parameter space the set is rendered as a surface, which is shown in Figure 6.

We adopt the following two common criteria for comparing the performance of the
three methods [9].One is computational cost: measured by the timeT for which the PEF is
computed once; the other is localization accuracy. Let the posePE = (xE,yE,θE)T be the
extremum of the PEF. And the localization error consists of two parts: translation error
ET =‖ (x∗,y∗)T − (xE,yE)T ‖ and orientation errorEO =‖ θ ∗− θE ‖. The comparison
results are shown in Figure 7, from which we could see:

• comparably accurate for localization (However, it is inevitable that BCE will fail
when occlusions and clutter are serious as well as PLS and Iconic)

• quick for real time tracking;

• with conspicuous peak of its curve showing robustness against general occlusions
and clutter.
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Figure 6: PEF surfaces in Frame 4835 and 6865. For each subfigure, the vertical axis
is PEF value and the two horizontal axes arei and j shown in Equation 12. And for
comparison, the PEF values of Iconic and PLS are normalized from 0 to 1 and then the
curves of PLS and BCE are reversed.

7 Conclusions

In this paper, we have proposed a method for pose evaluation based on Bayesian classi-
fication error. Various image cues are incorporated to depict an object including object
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Figure 7: Comparison results from Frame 4805 to 5015. (a) shows that the computational
cost of BCE is close to that of Iconic and much lower than that of PLS, and (b)(c) show
that BCE is better than others in terms of localization accuracy with modest clutters.

shape, region statistics and temporal information. Then a novel PEF is defined based on
BCE, and an efficient algorithm to calculate it is developed. We have tested our algo-
rithm with outdoor image sequences and have compared it with two other representative
methods. Both theoretical and experimental results have demonstrated the validity of the
proposed method.

The statistical framework of most pose evaluation methods including ours is based
on maximum likelihood estimation under the assumption that contour points are inde-
pendent. Our future work will attempt to remove this assumption and focus on how to
formulate the relations among several adjacent contour points and embed the relations
into the PEF for better performance.
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