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Abstract

This paper describes the adaptation the Bookstein method for fitting conics
to determination of epipolar geometry. The new method has the advantage
that it exhibits the improved stability of previous methods for estimating the
epipolar geometry, such as the preconditioning method of Hartley, whilst also
being invariant to equiform transformations. Within this paper it is proven
that there is only one invariant norm to the set of Euclidean transformations
of the image, and that this norm gives rise to a quadratic form allowing eigen-
vector methods to be used to find the essential matrixE, the fundamental
matrixF, or an arbitrary homographyH. This is a surprising result, as previ-
ously it had been thought that there was no more to say on the matter of linear
estimation of epipolar geometry. The improved performance is justified by
theory and verified by experiments on real images.

1 Introduction

In a now classic paper, Hartley [9] proposed that the much maligned “8-point” algorithm
of Longuet-Higgins [11], for computation of the Essential matrix, can be made far more
accurate by the application of a simple preconditioning to the image coordinates. This
was an important observation as the essential matrix and the Fundamental matrix [5, 7]
(its uncalibrated analogue) are key concepts in structure and motion recovery problems,
as they encapsulate epipolar geometry. Many authors had criticized the 8-point algorithm
and have instead proposed much more computationally intensive iterative algorithms, e.g.
[2, 8, 12]. However, as pointed out by Hartley, with suitable preconditioning the 8-point
algorithm can be made quite accurate at a fraction of the computational expense of the
more sophisticated algorithms. Furthermore, as most iterative algorithms use the 8-point
algorithm as an initial starting point, it is of the utmost importance to ensure that this is
as close to the global minimum as possible to speed convergence and circumvent local
minima.

However preconditioning has some unattractive properties, foremost being that it does
not render the estimation process invariant to choice of coordinate system within the im-
age. Being hostage to the choice of coordinate system means that different answers will
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be given, for the same point data, simply by cropping the image, or panning the image
plane—a situation which is clearly undesirable. To quote Bookstein [3] in the context of
curve and surface fitting: “When abscissa and ordinate represent an arbitrary coordinate
system, or arbitrary orientation, placed on an underlying geometric object, such as the
outline of the skull, the axes separately have no geometric meaning at all; they are wholly
commensurate and may be rotated freely. Wemust get the same geometric result in all
cases.”

Within this paper we describe a new linear method for estimating the epipolar geome-
try, that has the pleasing stability properties of the Hartley method and yet is also invariant
to equiform transformations1 of the image planes, indeed the transformation can be dif-
ferent for each of the images. Furthermore the method can be readily extended to other
two-image quantities such as homographies. This paper is laid out as follows: Section 2
reviews previous linear methods for determiningF, pointing out the lack of invariance in
these methods. Section 3 proves there is only one invariant normalization forE, F and
homographies that are not affine. Section 3.1 shows that this quadratic normalization can
be readily incorporated into the eigenvector solution used previously for linear estimation
of F, indeed it involves only the solution of a 4×4 eigensystem. Section 3.3 discusses
some further benefits of the formalism such as the ability to include arbitrary linear con-
straints onF. Finally in Section 4 results are given which show that the invariant method
performs at least as well as previous linear methods, whilst yielding an invariant solution.
Section 5 gives some directions for future research.

2 Estimating the Epipolar Geometry

Within this section we shall refer to estimation of the Fundamental matrix, hoping that
the reader will take it as given that the method applies also the Essential matrix. It can
also be shown that the method can be applied directly to the estimation of homographies
H.

The epipolar constraint is represented by the Fundamental matrix [5, 7]. This rela-
tion applies for general motion and structure with uncalibrated cameras. Consider the
movement of a set of point image projections from an object which undergoes a rotation
and non-zero translation between views. After the motion, the set of homogeneous image
points{xi}, i = 1, . . .n, as viewed in the first image is transformed to the set{x′i} in the
second image, with the positions related by

x′>i Fxi = 0 where F =

 f1 f2 f3
f4 f5 f6
f7 f8 f9

 (1)

wherex = (x,y,ζ)> is a homogeneous image coordinate andF is the fundamental Matrix.
Throughout, underlining a symbolx indicates the perfect or noise-free quantity, distin-
guishing it fromx = x+∆x, the value corrupted by noise (assumed Gaussian).

The fundamental matrix has 9 elements, but only 7 degrees of freedom. Thus if the
fundamental matrix is parametrized by the 3×3 matrixF then it is overparametrized: the
matrix elements are not independent but must satisfy two additional constraints. This is

1Equiform transformations comprise any combination of Euclidean transformations in the image together
with change of scale.



because the elements are only defined up to a scale, and the determinant ofF is zero.
The first constraint is the scale constraint, which must be imposed to obtain a unique
solution. Tsai and Huang [17] propose settingf9 = 1. However, this normalization has
the undesirable characteristic that it forbids certain solutions—specifically those withf9 =
0—and produces a biased solution. Most current practitioners propose∑ f 2

i = 1 and solve
for F as an eigenproblem, which is now described.

To reformulate as an eigenproblem, letf be the 9×1 vector of elements ofF, such
thatf = ( f1 . . . f9). The algebraic residual is then

f>zi = r i

where each

zi =
(
x′ixi x′iyi x′iζ y′ixi y′iyi y′iζ xiζ yiζ ζ2)> .

The eigenproblem will minimize the sum of squares of algebraic residuals. FormZ, the
n×9 design matrix with rowszi , so that

Z =

x′1x1 x′1y1 x′1ζ y′1x1 y′1y1 y′1ζ x1ζ y1ζ ζ2

...
...

...
...

...
...

...
...

...
x′nxn x′nyn x′nζ y′nxn y′nyn y′nζ xnζ ynζ ζ2

 . (2)

Let M = Z>Z be the 9×9 moment matrix, with eigenvalues in increasing orderλ1 . . .λ9

and withu1 . . .u9 the corresponding eigenvectors forming an orthonormal system. TheF
that minimizes the sum of squares of algebraic residuals,∑i r

2
i , is given by the eigenvector

u1 corresponding to the minimum eigenvalueλ1 of the moment matrix; i.e. the estimate
f = u1 minimizesf>Mf subject to the constraint, or normalization,f>Jf = 1, whereJ =
diag(1,1,1, . . . ,1). This normalization chooses a specific solution from the equivalence
class of solutions with different scalings. In this case the quantity being minimized is

∑ei =
n

∑
i

r2
i

f>Jf
=

n

∑
i

x′>i Fxi

f>Jf
=

f>Mf

f>Jf
. (3)

It is well known that such a linear method can be very ill conditioned especially if
the raw data is used withζ = 1. This has been pointed out in [9, 15]. To overcome the
ill conditioning of the linear method Hartley suggests that the data should be precondi-
tioned in the following manner: homographiesH andH′ should be applied to the image
coordinates in the first and second image in order to

1. Translate the points in each image so that their centroid is the origin.

2. Scale the points so that their average distance to the origin is
√

2.

In [15] a simpler mechanism is proposed, settingζ = 256, approximately the centre of the
image. Both methods have been found to produce equal improvements over the original
unnormalized 8-point algorithm.

Unfortunately, the normalization∑ f 2
i = 1 is not invariant to change of coordinate

system. For example, the epipolar geometry induced by the translation[0,0,1] means that
equation (1) becomes [

x′ y′ 1
]0 −1 0

1 0 0
0 0 0

x
y
1

 = 0



or y′x− x′y = 0, with ∑ f 2
i = 2. This can be transformed intoy′x− x̃′y+ y′ = 0, with

∑ f 2
i = 3, by a simple translation of the coordinate system, just that ˜x′ = x′+1, in one of

the images. Because this transformation increases the denominator in (3), the second fit
may be preferred to the first, even if the residual errors are higher.

To some extent Hartley guards against the choice of coordinate system by choosing
a data-dependent coordinate system, however this is not satisfactory in practice as the
data may include outliers. Incorrect matches (outliers) which lie along the epipolar lines
(corresponding to a wrong depth estimate) cannot be detected and will skew the choice of
coordinate system. In many applications the choice of coordinate system is assigned in
some arbitrary manner, and it would be desirable to have a linear method that is invariant
to choice of coordinate system. To quote Bookstein [3] “These authors must forcibly
standardize their data before conic fitting in any of various ad hoc ways. Translation to
centre of mass and rotation to principal axes are the most common. This approach seems
unsatisfactory. Data must be fit in a manner invariant under the Euclidean group, not
arbitrarily constrained with respect to it.”

In the next section a method for imposing the scaling invariant to Euclidean transfor-
mation of the image coordinates is considered.

3 Invariant Scaling for F

We seek an estimation rule which isgeneral, simple to computeandinvariant. Simplicity
suggests we seek a quadratic norm,f>Jf = constant, on the parameters ofF to enforce
the scaling constraint as this will lead to a eigenvector solution. Invariance is to be with
respect to Euclidean transformations of both image planes (possibly different transforma-
tions to different planes) i.e. if the coordinate system is changed in one or both of the
images, then the best fitting̃F to the transformed points must be exactly the result of the
same transformation(s) applied to the best fittingF of the original points.

Bookstein[3] suggested an invariant norm for conics under Euclidean transformations.
It has been observed that the fundamental matrix is like a conic in the four dimensions
of the joint image spaceR4 [15]. Following Bookstein we seek a parametrization ofF
invariant to Euclidean transformations in the image planes (which is a subgroup of the
Euclidean transformations in the joint image spaceR4). Fortunately the construction of
these invariants is a well studied problem [13].

Consider the transformations of the image coordinatesG in image one such thatGx̃ =
x, and image two,G′x̃′ = x′, which leads to a transformation onF such that,̃F = G′>FG
with

G =
[

R t
0> 1

]
, G′ =

[
R′ t′

0> 1

]
,

F =
[

A b
c> d

]
, F̃ =

[
Ã b̃
c̃> d̃

]
.

(4)

Thus it can be seen that

F̃ = G′>FG =
[

Ã b̃
c̃> d̃

]
=

[
R′>AR R′>At +R′>b

t′>AR +c>R t′>At + t′>b+c>t +d

]
.



From this it can be seen that the norm cannot be any combination off3, f6, f7, f8, f9 as
these can be transformed to arbitrary values by translations of the image coordinates. In
the special case where botht andt′ are known to be zero, the normalization∑i=9

i=1 f 2
i = 1

(amongst others) is invariant to rotations of the image plane. Discounting this non-generic
case, this leaves the elements of the upper left 2×2 submatrix ofF to define the norm.
BecauseR andR′ are rotation matrices it can be immediately seen that

det(Ã) = det(R′>AR) = det(A)
‖Ã‖F = ‖R′>AR‖F = ‖A‖F

where‖ · ‖F denotes the Frobenius norm of the matrix. Thus we have the choice of the
following invariants, the determinant det(A) = ( f1 f5− f2 f4), and the Frobenius norm

‖A‖F = ( f 2
1 + f 2

2 + f 2
4 + f 2

5 )
1
2 . How many invariants can there be? Referring to [13] the

counting argument states: “suppose there is a configuration spaceS , on which a group
G acts, then the number of functionally independent primitive scalar invariants is greater
than or equal to dimS − dimG”. In this case dimA = 4 and dim(R,R′) = 2, thus we
would expect at least two invariants.2

Which of these norms is most appropriate? In order to deduce this another desider-
atum is introduced: that the norm is positive definite. This is desirable because epipolar
geometries for whoseF the norm is zero can never be fitted at all, even if the data lie
exactly upon them. Therefore we must bid goodbye to the determinant norm det(A),
which excludes allF for which det(A) = 0. The square of the Frobenius norm‖A‖2

F =
( f 2

1 + f 2
2 + f 2

4 + f 2
5 ) does not exclude generalF, rather it will fit all F except for data for

which a linear or affine fundamental matrixFA [13] is more suited;

x′>i FAxi = 0 where FA =

 0 0 g1

0 0 g2

g3 g4 g5

 . (5)

Whether or notFA is the more appropriate model can be determined by model selection
methods [16]. IfFA is the better model then an exact eigenvector solution [14] exists
for FA that minimizes reprojection error which should always be used rather than a more
general algorithm for fittingF. Thus we propose to minimizef>Mf subject tof>Jf =
constant, whereJ = diag(1,1,0,1,1,0,0,0,0), is the square of Frobenius normalization.

The square of the Frobenius norm‖A‖2
F = ( f 2

1 + f 2
2 + f 2

4 + f 2
5 ) is also invariant to

choice of scale. Without loss of generality consider only the change of scaling in one of
the images. If the coordinates in one image are rescaled byk, (x,y) → (x̃, ỹ) = k(x,y),
let fk be the vector of coefficients of the best fittingF by this norm. The rescaling re-
places the moment matrixM by DkMDk whereDk = diag(k,k,k,k,k,k,1,1,1). Thus
in the new coordinate system the minimization is off>Mkf subject tof>Jf = constant,
whereJ = diag(1,1,0,1,1,0,0,0,0) (becauseDkJDk = k2J). SinceDk is not singular the
extremum is given byD−1

k f, wheref is the extremum before rescaling. ButD−1
k f is sim-

ply the transformed version off. Hence the method presented is invariant under equiform
transformations (Euclidean and scaling transformation in the images), and consequently
choice of the third projective coordinateζ.

2If only one rotation was applied to both images i.e. we knew the common orientation of the two images,
then we could expect another invariant, which would correspond to trace(A)



3.1 Imposition of the quadratic constraint f 2
1 + f 2

2 + f 2
4 + f 2

5 = K

We wish to minimizef>Mkf subject tof>Jf = constant, where

J = diag(1,1,0,1,1,0,0,0,0). (6)

There are two eigenvector methods for conducting this minimization. The first is some-
what easier to implement (especially in MATLAB) and involves solving the generalized
eigenvector problem:

Jf−λMf = 0. (7)

The second is like that proposed by Bookstein for the conic fitting problem, and is faster
and more stable: First partitionf into two components,f1 = ( f1, f2, f4, f5) comprising
the four elements ofA, the secondf2, comprising the other five elements. LetM be
partitioned correspondingly:

M =
[

M11 M12

M>
12 M22

]
so that

f>Mf = f>1 M11f1 +2f>1 M12f2 + f>2 M22f2,

asM and its partitions are all symmetric. We must minimize this subject tof>1 J11f1 =
constant, whereJ11 = diag(1,1,1,1) = I . For any fixedf1, f>Mf is minimal when

∂f>Mf
∂f2

= 2M>
12f1 +2M22f2 = 0 (8)

which implies
f2 =−M−1

22 M>
12f1 (9)

Then
f>Mf = f>1 (M11−M12M−1

22 M>
12)f1 = f>1 Qf1. (10)

To minimize this forf>1 J11f1 = constant, letλ be a Lagrangian multiplier for the con-
straint. Then we must set the derivative with respect tof1 of f>1 Qf1−λf>1 f1. This yields

Qf1 = λf1, (11)

thus f1 may be recovered as the eigenvector solution of (11), and thenf2 is obtained
from (9).

3.2 Imposing the cubic constraintdet(F) = 0

The second constraint whichF should satisfy is a cubic polynomial in the matrix elements
imposing det(F) = 0. If it is not imposed, then the epipolar lines do not all intersect in a
single epipole. Assume that we have an estimate of the fundamental matrix,F̂. Typically,
when performing only linear estimation to obtainF̂ this constraint is imposed by project-
ing the linear solution onto the space of Fundamental matrices such that det(F) = 0, such
that the Frobenius norm‖F̂−F‖F is a minimum.

A problem is that smaller elements will have a relatively greater perturbation in re-
lation to their size. Thus the method of [9] is adopted. This is not entirely satisfactory
as ideally we would like to choose thef̂ which minimizes some Mahalanobis distance
(f̂− f)>M−1

f (f̂− f), taking into account the covariance ofF. Work on this is in progress.



3.3 Imposing Linear Constraints on F

The computation remains tractable when we place arbitrary linear constraints on the pa-
rameters. If these linear constraints satisfyLf = 0, thenf is the eigenvector corresponding
to the largest eigenvalue of the system

(I −L(L>M−1L)−L>)Jf−λMf = 0. (12)

whereA− denotes the generalized inverse of an arbitrary square matrixA. A more ef-
ficient solution to this generalized eigensystem is given by Golub and Underwood [6],
which reduces the problem to a smaller, symmetric system.

Setting linear constraints erodes the available degrees of freedom in various ways,
some possibly useful e.g. (1)f1 = 0, f5 = 0: the two cameras are mounted on a lateral
stereo rig [4], with the cameras free only to vary their angle ofdi or ei ; (2) skew symmetry
f2 =− f4, f3 =− f7 and f6 =− f8, this occurs under a pure translation, generally it would
be preferable to fit a two parameter model directly. If the camera has both epipoles in the
centre of the image (forward translation and cylcorotation) thenf3, f6, f7, f8 = 0.

4 Experiments

Within this section tests on synthetic and real data are described. For synthetic data, where
the ground truth is known, an empirical measure of the goodness of fit is achieved by cal-
culating the reprojection error of theactualnoise free projections of the synthetic world
points toF provided by each estimator. Traditionally the goodness of fit has been assessed
by seeing how well the parameters fit theobserveddata. But we point out that this is the
wrong criterion as the aim is to find the set of parameters that best fit the (unknown)true
data. The parameters of the fundamental matrix themselves are not of primary impor-
tance, rather it is the structure of the corresponding epipolar geometry. Consequently it
makes little sense to compare two solutions by directly comparing corresponding param-
eters in their fundamental matrices; one must rather compare the the difference in the
associated epipolar geometry weighted by the density of the given matching points. The
inadequacy of using the fit to theobserveddata to assess efficiency, in the presence of
outliers, will be demonstrated in the results section. This error metric is the first order
approximation of the reprojection error of the noise free points toF: E1 = ∑n

i=1(wi f
>zi)2.

The second statisticE2 is the average distance in pixels from the true epipole in each
image to that yielded by the estimate ofF.

DataX are randomly generated in the region ofR3 visible to two positions of a syn-
thetic camera having intrinsic coordinates equivalent to an aspect ratio of 1.5, an optic
centre at the image centre(256,256), and a focal length off = 703 (notionally pixels),
giving a field of view of 40◦, and giving 0≤ x,y≤ 512. These values were chosen to be
similar to the camera used for capturing real imagery. The projection of a pointX in the
first position isx = C[I |0]X and in the second isx′ = C[R|t]X where the camera makes a
rotation[R] and translationt. The motion is random and different in each test. In order to
simulate the effects of the search window commonly employed in feature matchers, and
to limit the range of depths in 3D, correspondences were accepted only if the disparity
lay between 4≤ δ ≤ 30 pixels. (Some notion of the limits on depthZ can be obtained for
pure translation as|t| f/δmax≤ Z≤ |t| f/δmin.)



(a) (b) (c) (d)
Sequence Length Bundle 8-point (‖ f‖= 1) Invariant (‖F22‖2

F = 1)
(a) 11 582 583 583
(b) 100 752 751 751
(c) 100 297 297 297
(d) 108 695 657 695

Figure 1: (Top) Example images from each of four test sequences. (Bottom) The table
shows tracking performance for each algorithm as average number of inlying tracks over
the sequence. “Length” is the number of image pairs tested. The general conclusion is that
the invariant algorithm and the 8-point algorithm have similar average perfomance, but
that the 8-point algorithm depends on an ad-hoc scaling of the data, which the invariant
algorithm avoids. Also, for certain sequences (such as (d) here), the 8-point algorithm can
produce biased fits, resulting in significant loss of tracks.

Figure 1 shows some images from real sequences which were used to test the new
algorithm. In this test, as no ground truth is available, an estimate of success will be
the number of matches recovered which are consistent with the final recovered epipolar
geometry. Consistency is measured using the exact reprojection error [10]. The proce-
dure follows that of Beardsley [1]: putative pairwise point matches are found by cross-
correlating image patches centered on Harris corners, yielding a few hundred matches.
These are pruned using RANSAC, and refined using the algorithm under test. Results are
shown for (1) the baseline bundle adjustment algorithm, (2) the 8-point algorithm and (3)
the new invariant algorithm. The general conclusion is that the new algorithm and the
8-point algorithm have similar performance, but that the 8-point algorithm occasionally
fails to fit the track data, resulting in significant loss of tracks. In addition, the compari-
son with bundle adjustment shows that the linear algorithms are competitive in terms of
number of tracks maintained. This is an interesting result as they are orders of magnitude
faster.

5 Discussion and Conclusion

There are several lines of work which we are following. First the analysis can be trivially
extended to homographies and various other image relations, allowing invariant estima-
tion of these quantities. For homographiesx′ = Hx, following the same notation as before,
H̃ = G′−1HG, yielding the form of the norm as forF, such that the Frobenius norm of
the top 2×2 of H should be held constant. Second the result may have some bearing on
nonlinear methods for estimatingF, for instance in the past it has been suggested mini-
mizing F with the determinant of the upper 2×2 held constant, it can now be seen that it
makes more sense to hold the Frobenius norm of the top 2×2 constant instead. The linear



estimation ofF is a two part process, estimating a non-rank 2F and then constraining it
to be rank 2, in depth consideration of the second part is beyond the scope of this present
paper.

Within this paper the important problem of epipolar geometry estimation has been
revisited. It has been thought that there is nothing more to be said on the subject and yet
within this paper we have demonstrated a linear algorithm, solvable by a simple 5× 5
eigenvector method (smaller than for the 8 point algorithm which solves an 8×8 prob-
lem!), which has the desirable property of invariance to shifts in the image coordinate
system. The algorithm is compared to the state of the art algorithms, specifically those
involving preconditioning and has been found to be as good as those algorithms and to
yield an invariant fit. Its adoption is recommended whenever the practitioner intends to
use linear methods to fitH, E or F, and the situation is not affine. Code for the method is
available athttp://www.robots.ox.ac.uk/∼awf/bmvc03invariance.
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