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Abstract

Using the so-called closure constraints, it is possible to estimate the projec-
tion matrices of the cameras observing a static scene given correspondences
between multiple views. We present a batch algorithm for recovering all the
cameras based on the closure constraints. The approach is motivated by the
necessity of including as much information as possible in the initial recovery
of the motion, as is done in factorisation schemes. The main advantage of
the proposed method over factorisation is that it naturally deals with missing
data. Compared to other algorithms, the method is very fast and flexible in
terms of the selection of input data.

1 Introduction

The problem of recovering the motion of a camera given only image feature correspon-
dences has been extensively studied, see e.g. [5, 6, 7-17]. Most techniques are based
on an initialisation phase followed by a Maximum Likelihood refinement, namely bun-
dle adjustment [18]. Existing initialisation algorithms can be divided into two families,
namely batch and sequential processes. The advantage of batch initialisation is that as
much of the available information as possible is included as early as possible in the initial
reconstruction step. This is not the case in sequential processing, where the global infor-
mation is ‘patched on’ at a later stage, typically using bundle adjustment. Both families
have important drawbacks, in particular the majority of existing batch algorithms require
all features to be present in all images, and sequential algorithms may suffer from severe
accumulation of the errors.

The method presented in this paper concerns a batch algorithm where the presence of
all features in all images is not required. The basic idea is to compute matching tensors
between the images (fundamental matrices, trifocal or quadrifocal tensors) and finally
determine all of the camera matrices in a single computational step.

The prototypical batch algorithm for recovering structure and motion is the Tomasi-
Kanade factorisation scheme in [14]. It recovers a Maximum Likelihood Estimate (MLE)
[11], but it is restricted to the affine camera model. It has been extended to full perspective
[13], without however maintaining the ML-property. As with all factorisation schemes,
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it has difficulties handling missing data. The methods proposed in [8, 10] extend classi-
cal factorisation to handle missing data and in [1] absence of a given image feature may
be accounted for by setting its associated covariance to infinity. However, the computa-
tional complexity of the abovementioned methods increases drastically with the amount
of missing data. Specifically, they all at best involve a singular value decomposition of
a 2m x n matrix, m being the number of cameras and n the total number of observed
3D points. Other batch multiview reconstruction schemes include reconstruction from
matching tensors [6] and these are thus limited to less than 4 views.

The notion of closure constraints was introduced by Triggs in [17], denoting bilinear
constraints between camera parameters and matching tensors. We investigate these con-
straints in §3. There, closure constraints are used to construct a constraint matrix which
is eventually solved for yielding the camera parameters. In [9] closure constraints for the
affine camera model are derived.

This paper makes the following contributions: Firstly, we derive a simple formulation
for closure constraints for the affine camera and show how a simple linear system can
be built in §4. Secondly, we analyse the structure of the central design matrix for three
practical families of configurations in §5. These are (i) the minimal cases, where the
number of constraints yields an exact solution, (ii) the continuous motion cases where
correspondences only exist among a limited number of neighbouring views, and (iii) the
general unstructured cases which are characterised by a sparse structure of the design
matrix. Thirdly, we compare our algorithm with existing ones based on simulated and
real data in §6 and conclude the paper in §7.

2 Notation and Background

We denote 2D homogeneous image points by a subscripted x, 3D homogeneous points by

X =[X 1]7 and camera matrices by P with
/\inij:Pin i:1...m,j:1...n (1)

where m and n denote the number of views and 3D object points respectively, and A is the
projective depth of the given point.

The fundamental matrix F1> encapsulates the geometrical relationship between two
views (for simplicity of notation we consider view 1 and 2). It constrains the positions of
corresponding image points x1j and X»; through the relation

X1jF1oX2j =0, j=1...n 2)

The line defined by F12xp; is the epipolar line of xo; in image 1, i.e. the line joining the
epipole e1 and xy;. For the affine camera model, the projection matrices have the form

(5 3]

The affine fundamental matrix has five non-zero entries defined up to scale, i.e. four de-
grees of freedom:
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Computing the fundamental matrix thus requires at least four point correspondences, how-
ever as many points as possible should be included to minimise the effect of noise. A
closed-form solution for the Maximum Likelihood Estimate of the affine fundamental
matrix exists [6].

3 The Closure Constraints

In [17], Triggs introduces the so-called F — e closure constraint, i.e. F1oP2+[e21]xP1=0
and the e — G — e closure. We will here give a simple derivation of an alternative closure
constraint, the F-closure: Let x; and x, denote the projections of X € P2 onto two images.
Combining equations (2) and (1) we obtain:

XTPIFP,X =0, VX eP3

7
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which is a quadratic form. Consequently .# is skew symmetric, i.e. T = —.&.

4 A Simple Formulation of the Affine Closure
Constraints

In the affine case, the structure of . becomes particularly simple, which stems from the
structure of the camera matrices (3) and the affine fundamental matrix (4):

7 —rlrap= | % 5| ©
The upper left 03,3 matrix is the result of the corresponding bilinear term containing
either a zero-coefficient from the fundamental matrix or one of the corresponding camera
entries being zero. The rest of the structure of . is a consequence of the skew-symmetry,
and concerns only linear terms in the entries of the camera matrices since these terms
include the lower right 1 of either Py or P,. By rearranging the equations in (6) these turn
into four linear constraints on the coefficients of P1 and P5:

@ b c d][% E][og —e] @)

r12

These constraints apply for each pair of views {P;,,Pi, }, i1 # i2, provided F;,;, is defined.
Affine trifocal or quadrifocal tensors could be used as well, for instance by extracting
fundamental matrices, or along the lines of [9]. We construct a linear system of equations
using (7) as the building block, with the form S&2 = %:
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Figure 1: Structure of the central design matrix constraining the camera matrices. The
shown structure is for a minimal configuration, i.e. 2m — 3 block-row entries for m views,
before fixing the 12-parameter gauge freedom (See §5.1 for more details).

where ri,j, is the right hand side in equation (7) and s;,j, are 1 x 2m row vectors

Siji,=[.-. a b .. c d .

First block Second block

dots indicating an adequate number of zeros. One possible structure for S is shown in
Figure 1. Depending on the configuration of the views, in particular whether local degen-
eracies are present or not, and depending on other parameters such as efficiency require-
ments and the presence of correspondences between frames, we choose one of several
approaches to solve the system.

5 Classifying and Solving Practical Cases

Below we consider three practical cases: the first concerns minimal configurations, and
is appropriate when little overlap exists among the views. One scenario in which the
minimal case is particularly useful is when doing a RANSAC [15] on the fundamental
matrices in order to discard erroneous ones. The second case concerns sequences from
continuous camera trajectories, i.e. where correspondences exist between a limited num-
ber of neighbouring views only. In the third case we consider general configurations with
no prior structure in the overlap pattern between views, except for overall sparsity.

5.1 Minimal Configurations

In minimal configurations, the system in (8) has an exact unique solution , i.e. the ma-
trix on the left hand side must be square and have full rank. In consequence, the gauge
freedom related to the overall 12-parameter affine indeterminacy has to be eliminated.
In practice, this is done by selecting two cameras for which the fundamental matrix is
well defined [16], subsequently fixing 8 parameters in the first one and 4 parameters in
the second. Also, since each pair of views eliminates 4 degrees of freedom, we need
(8m —12)/4 = 2m — 3 pairs to account for the remaining free parameters of the m views.
One possibility is to include the relations between a given camera and the two following
ones, except for the two last ones. This yields the square banded non-symmetric ma-
trix in Figure 1 which has full rank, provided that none of the camera configurations are
degenerate.



Figure 2: The experimental setup: m affine cameras pointed inwards on a circular path,
observing a cubic cloud of n uniformly distributed points. The angle 8 indicates the
angle between the focal axis of two neighbouring cameras and is used as a measure of the
baseline

5.2 Continuous Motion Configurations

By continuous motion (cm) we understand a type of sequence where sufficient overlap
exists between a certain number of neighbouring frames n¢y, > 3 for fundamental matrices
to be established among them (the case nem = 3 being a minimal configuration, see §5.1).
The system is in general overdetermined. We consider the associated normal equations

STs» =S" 9)

where STS is a band matrix with twice the bandwith as S. The system is solved using band
or profile Cholesky factorisation/back substitution, see e.g. [3] for details. The execution
time of the band Cholesky factorisation is known to be O(band width x matrix size),
thus the execution time for the continuous motion configuration is O(n2,m), nem being
proportional to the band width and ncym proportional to the matrix size. The continuous
motion configuration may be extended to the case where a few matching relations exist
among non-neighbouring views, in which case STS may be rearranged into an arrowhead
structure [18]. One such common case is when a sequence is closed, i.e. previously
observed 3D points reappear at some point, typically the end of the sequence.

5.3 Unstructured Configurations

If each view is connected to at least two, and on average many fewer than m, the matrix
S is sparse but unstructured and we solve the system using a supernodal approach [4].
Note that we could also use sparse QR decomposition and hence avoid having to form the
normal equations, see e.g. [7] for an overview and further references.

6 Experiments
6.1 Synthetic Data

Experiments were performed on synthetic data using the setup shown in Figure 2. m
cameras are laid out on a circular path, all pointing inwards. The observed object consists
of n 3D-points uniformly distributed within a cube.



Reprojection error for the proposed method compared to MLE
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Figure 3: Comparison between the maximum likelihood estimate of the cameras and
structure, the proposed batch method and a sequential scheme where an initial structure is
computed using 6 cameras, whereupon the remaining cameras are obtained by resection-
ing. The graph shows the reprojection error as a function of the (gaussian) image noise.
The proposed batch algorithm performs better than the resection/intersection approach
and is close to the Maximum Likelihood Estimate

6.1.1 Comparison to Existing Methods

The proposed algorithm is compared to two methods: The first is the factorisation algo-
rithm given in [14], a Maximum Likelihood Estimator for affine motion and structure.
The second is a widely used reconstruction algorithm where an initial set of cameras
and visible 3D points are computed from the first frames in the sequence, followed by
a series of resections and intersections in order to recover the remainder of the motion
and structure [2]. In the experiment, m = 12 cameras and n = 100 3D-points were used,
with gaussian noise (o = 1 pixel) in the images, all 3D-points being visible in all views.
As it can be seen from Figure 3, the presented batch algorithm performs better than the
resection/intersection-approach and is close to the Maximum Likelihood Estimator.

6.1.2 The Influence of Various Parameters

Width of the camera baseline: In order to assess the importance of the width of the
baseline, the experiment shown in Figure 4a was performed. Again, m = 12 cameras
were used, positioned on the arc of the circle of Figure 2 and the angle of incidence of
their focal axis 3 varied from 2° to 30°, i.e. the overall baseline varied from 24° to 360°.
The noise in the image is white gaussian with o = 1 pixel. Fundamental matrices were
computed among each view and 10 of its neighbours. The reprojection error is seen to
peak for B = 7°. For lower values of 3, the constraints imposed on the structure by the
cameras are so loose that they are easily satisfied. For higher values, the computation
of the fundamental matrices is getting well-conditioned, thus yielding lower reprojection
errors.
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Figure 4: The influence of various parameters: (a) The effect of enlarging the baseline.
The figure shows the decrease in error as the baseline gets larger (from 3 = 2° to 8 = 30°).
m = 12 views were used and n = 150 points, each camera was related to 10 neighbours
using fundamental matrices. Image noise o = 1 pixel. (b) The effect of degenerate camera
matrices in the sequence. The graph shows the reprojection error as a function of the
percentage of views which are equal in the sequence (m=12,n =150, 3 =18°, 0=1
pixel).

Sensitivity to degenerate matching tensors: In this experiment (m = 12, n = 20, and
B = 18°, image noise o = 1 pixel) the sensitivity of the algorithm with respect to the
number of deficient fundamental matrices is investigated. This is done by successively
setting the images 2...m — 1 equal to the m’th,thus ensuring degenerate fundamental ma-
trices among them. The result is shown in Figure 4b, where the reprojection error is
plotted against the percentage of equal views in the sequence. As the number of equal
views increase, i.e. the degeneracies become more numerous, the reprojection error is ac-
tually seen to decrease. When all the views are the same, the configuration is globally
degenerated and the reprojection error is meaningless. Again, the more equal views in
the sequence, the looser the constraints on the structure, eventually leading to a lower
reprojection error.

6.2 Experiments on Real Data

The experiments on real data were performed on two datasets, the Hotel sequence from
Carnegie Mellon University and the Dinosaur sequence from the University of Hannover.

6.2.1 Dinosaur Sequence

The sequence consists of 37 images with perspective effects, of which the first and the last
are known to coincide. A total of 1888 3D-points were tracked across the sequence using
the KLT-tracker [12]. In Figure 5a, the presence of the projections of the 3D points in each
frame is shown. (b) shows whether a given pair of frames has sufficient correspondence
overlap for its fundamental matrix to be computed, (we will call it the view interaction pat-
tern) and (d) the histogram of all the reprojection errors. (c) and (e) show the 23rd frame
in the sequence, respectively the original image and the measured/reprojected points. The
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Figure 5: Experimental results on the Dinosaur sequence. (&) feature presence in
each frame. (b) view interaction pattern, cf. §6.2.1. (c) frame 23 from the sequence.
(d) histogram of the reprojection error. () tracked and reprojected features. The mean
reprojection error is 5.4 pixels.

average reprojection error is 5.4 pixels and the system (7) was solved in 2.1 milliseconds
on a Pentium IV@1.8 GHz.

6.2.2 Hotel Sequence

The sequence consists of 181 images obtained with a near-affine camera observing 197
3D points which are all visible in all the frames. In Figure 6a the view interaction pattern
is shown. Although all the points are visible in all the views, a quasi-minimal banded
configuration (with bandwith 4) is chosen in order to illustrate the good performance even
with limited interactions between views. (c) shows the histogram of all the reprojection
errors. (b) and (d) show the 95th frame in the sequence, respectively the original image
and the tracked/reprojected points. The average reprojection error is 3.5 pixels and the
execution time 23 milliseconds.

7 Conclusion

In this paper we presented a batch algorithm for recovering the camera matrices in the
structure from motion problem. The method is based on linear affine closure constraints,
and recovers all the camera matrices by solving a single, possibly overdetermined, linear
system. Depending on the correspondence pattern in the sequence, different solvers are
applied. Experimentally, the accuracy of the method was shown to lie close to that of the
Maximum Likelihood Estimator as long as sufficient baseline is provided. The recovery
of nearly two hundred camera matrices was performed in a few hundreds of a second.
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Figure 6: Experimental results on the Hotel sequence. (a) view interaction pattern, cf.
§6.2.1. (b) frame 95 in the sequence (c) histogram of the reprojection error. (d) measured
and reprojected features. The mean reprojection error is 3.5 pixels.
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