A Multiple View L ayered Representation for
Dynamic Novel View Synthesis

Keith Connor and lan Reid
Department of Engineering Science
University of Oxford
Oxford, OX1 3PJ, UK

[krc,ian]@robots.ox.ac.uk

Abstract

We propose a multiple view layered representation for tracking and seg-
mentation of multiple objects in a scene. Existing layered approaches are
dominated by the single view case and generally exploit only motion cues.
We extend this to integrate static, dynamic and structural cues over a pair of
views. The goal is to update coherent correspondence information sequen-
tially, producing a multi-object tracker as a natural byproduct. We formulate
aMAP solution for estimating layer parameters which are consistent across
views, with the EM algorithm used to determine both the hidden segmen-
tation labelling and motion parameters. A persistent representation of oc-
cupancy is maintained in spite of occlusion without enforcing a particular
parametric shape model. An immediate application is dynamic novel view
synthesis, for which our layered approach offers a direct and convenient rep-
resentation.

1 Introduction

Thelayered representation has grown from aneed to represent and describe natural scenes
compactly. A video sequence, for example, may be represented in terms of a small hum-
ber of regions and their associated motions [11]. Layers have mainly found use in the
representation of monocular video sequences, typically for applications concerned with
video coding.

A new layered representation suitabl e for multiple view descriptions of dynamic scenes
is presented. This is motivated by the Novel View Synthesis (NVS) problem which re-
quires correspondence information across views. Our approach seeks only implicit 3D
information, i.e. correspondence, and is therefore an image-based approach not requiring
calibration. We introduce the concept of layer aspects in order to model view dependent
layer properties and augment this with a global visibility representation for each view
which handles inter-layer occlusions. Layer parameters are computed sequentialy for a
pair of views conditioned on the layer parameters at the previous time. This amounts to
tracking multiple objects in two views where, as will be shown, the layer parameters can
be used to render consistent novel views over time, i.e. Dynamic Novel View Synthesis.
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In this paper we apply the method to view interpolation, but it is equally applicable to
more general synthesis methods [4].

1.1 Redated Work

Thetypical conception of alayer isbased on transl ating object-like propertiesto theimage
plane. That is, objectstend to have spatial continuity and coherent motion, and thusalayer
should have the same properties. Difficulties are encountered because projection discards
depth information and complications such as occlusion result.

The most common forms of layered model encountered in the literature are designed
for the single view case. The computation of layers has been formulated as estimating the
parameters of a number of global motion models and their regions of support. A region
of support is simply a subset of image pixels which belong to alayer.

Wang and Adelson [10], robustly compute affine motion parameters over an arbitrary
grid of patches and proceed to cluster motion and re-evaluate both the number and extent
of the layers. More recently, approachesby [5] [1], employ a probabilistic mixture model
formulation to compute the maximum likelihood layer parameters and the number of lay-
ers. The EM-algorithm [6] has become the standard tool for estimating layer parameters
because it enables the simultaneous computation of segmentation and motion.

A particular variant among previous approaches is whether or not occlusion is fully
accounted for. The persistent representation of alayer’'s occupancy in spite of occlusion
is key for tracking and is exploited by Jepson et al. [7], where a strong shape model is
employed. Tao et al. model a layer’s shape by a Gaussian spatial prior but this serves
more as a segmentation (i.e. visibility) prior rather than an occupancy prior and thus does
not explicitly consider occlusion.

Most previous approaches compute motion layers for a single view of a dynamic
scene, while other less prolific work considers structural layers. The work of [2] and [9]
consider two-views of a scene in order to extract 3D layers, where the transformations
between views is due to structure rather that dynamic object motion. In contrast, our
work considers both motion and structure.

2 A Layered Representation

This section introduces the chosen layered representation and describes the concepts gov-
erning a generative model. We describe a layer in terms of spatial extent, appearance,
alignment and visibility. Thelatter is particularly important for an image-based represen-
tation. These termswill be defined and quantified in the rest of this section.

The layered model is composed of N + 1 layers, i.e. the background layer and N
foreground layers. In general each layer will have a number of aspects where an aspect is
defined to be a layer’'s representation in a particular view. Figure 1 illustrates the general
layered representation for multiple layers with multiple aspects.

In particular, the the layered model at atimet is denoted as Ly = (O, A, @), where,
in order, the parameters represent: occupancy, appearance and alignment, and are inde-
pendent for each layer. In contrast, visibility is a direct function of al layersand is also
view (aspect) dependent. The concept of an aspect is necessary in order to alow for view
dependent visibility. Alignment parameters @} encode the mapping (correspondence) be-
tween aspects of thei’th layer.
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Figure 1: Multiple aspect layered model. Layers are composed of a humber of aspects
which correspond to the layer’s representation in a particular view. In general, the model
has N layers and each layer has M aspects.

2.1 Generative model

Animagel obtained at timet is generated from amixture distribution, where the value of
each pixel I;(x) is sampled from the following distribution:
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where, Vi (x) isavisibility indicator variable which evaluatesto i if thei’th layer isvisible
at x.

The likelihood distribution for an observed image intensity, conditioned on the visi-
bility of a particular layer, constitutes an appearance model for that layer. In particular,
the colour distribution at pixel x given that layer i is visible is precisely the appearance
distribution, denoted by a random variable A, such that P(A] | x) = P(It(x) | V() = i).
Thismay be, for example, acolour histogram, a parametric mixture model, or acomplete
spatially dependent statistical model. Thus, equation 1 is effectively a composition of
aspect appearances.

In the following, depth ordering amongst layers is denoted implicitly through layer
indices, where layer O is taken to be the background layer: a special layer which is as-
sumed to occupy every pixel in both views. Whereas visibility is mutually exclusive at
pixel sites, occupancy is not, and in fact visibility is adirect function of the occupancies.
Further, knowing the depth relationship among layers:
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Figure 2: A layer is represented by persistent occupancy and view-dependent visibility
probability densities. A layer is partially occluded in two views (left) and the correspond-
ing representation is shown (right).

Thissimply expressesthat for alayer to bevisible at apixel x, it must occupy x, and layers
that could occludeit, must not occupy x. Theforemost layer visibility probability isthere-
fore equal to its occupancy probability, P(Vi(x) = N) = P(ON(x)), and the background
layer visibility is dependent only on the other layer occupancies.

In this paper we concentrate on the situation for two views of a dynamic scene and
therefore each layer has two aspects. Figure 2 illustrates the how occlusion is modelled
in and across views by maintaining a persistent occupancy representation.

3 Computing layer parameters

We wish to compute the parameters of the layered model that maximise the posterior
likelihood of the current image pair giventhe previouslayer parameters. Bayesrule gives:

P(Lt [ 1t, Li—1) o= P(l¢ | Lt, Li—1) P(Le | Le—1) 3)

Maximising this posterior with respect to the layer parametersis difficult in general,
however this fits well into the EM-algorithm [6]. We assume the hidden data are the
visibilities over the current images, i.e. variables that indicate which layer is responsible
for generating each pixel (see section 2.1). Thus, the E-step corresponds to obtaining
the visibility posteriors given the current estimate of the layer parameters. The M-step
consists of maximising the following objective function over the layer parameters.

Q(Lt,L{) =E [lnP(h,V | Lt, Ltfl) | lt, Lé, Ltfl] +InP(Lt | Ltfl) (4)

The following sections describe the individual steps taken to optimise this objective
function which constitute a Generalised EM-algorithm. Figure 3 gives an overview of the
steps taken for each iteration.
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Figure 3: Overview of stepsin computation.

3.1 Temporal updatefor layer priors

Given the layer parameters at the previous time step, L;_1, we compute a prior on the
parameters atimet. In order to do this, the parameters of the chosen motion model are
computed between successive frames in each view. In our case, we compute an affine
motion for both aspects of each layer, W, by minimising the following error function over
the six parameters of W separately in each view:
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Thisis minimised by a Gauss-Newton procedure using a weighted version of the inverse
compositional algorithm proposed by [3]. Thus, we obtain estimates of the temporal
motions, W} and W, for each layers aspects.

In the following we drop layer indices on the understanding that we are considering
a particular layer. Occupancy priors are computed by transforming the previous posteri-
ors on occupancy via the temporal motions. This effectively shifts the occupancies into
probable locations. More precisely, an occupancy prior is computed by:

PO) = [, P(OL(<))PO)a ©

where, E[x'] = W~1x, and P(x') is the probability distribution for the location x’ associated
with the transformation’s covariance. If the actual motion is correctly modelled by the
chosen motion model and computed with complete accuracy, then P(x’ = W=1x) = 1
and the occupancies are simply transferred, in general however, P(x’) account for the
uncertainty in the estimated motion.

Thetransitiverelationship between alayer’smotion in each view and alignment across
views provides a prior estimate of the current alignment parameters for each layer:

D =Wod_ W, t (7)

3.2 Computing visibility

This section describes step 1 from figure 3. The posterior visibilities are computed for
each view by computing the expectation given the current estimates of the layer parame-
ters. Bayes' rulegives:

P(|t |Vt(X) = i, Lt, Ltfl) P(Vt<X) =i | Ltal—tfl)
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and following from equation 2, we have, for the first view:
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We also evaluate the joint distribution for visibilities which are required by step 4 in
figure 3. We consider the joint distribution under thei’th alignment:

PV (X) = j, V(@' (x)) = k|, I/, Lt,Ly 1) = (11)
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where the conditional probability can take values as follows:
= 0 o (j=ik<i), (j<ik=1) (13)
= Thia[1-PO@'(X)] : (j=ik=i) (14
= P(V/(®'(x)) = |) . otherwise (15)

The choice of a suitable appearance model is to a large extent application dependent. In
the present work, we represent the background appearance by a Gaussian distributionsfor
each pixel and each foreground layer appearance by a single Gaussian distribution. The
parameters are updated using aweighted sum of the current parameters and the new obser-
vations according to the visibility posteriors. Such a perversely simple model is flexible
enough to cope with a useful range of interesting scenarios. In particular, the sequences
of football action we present in section 5 are handled adequately. Other possible models
are currently being evaluated.

3.3 Computing alignment

Each layer has affine alignment parameters, ®!, which put the layer’s aspects into corre-
spondence. Here we consider step 2 from figure 3. We compute the alignment of aspects
by minimising the following error function:

2
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where, ¢{ representsthe current alignment and ®! represents the updated alignment. This
weighting by the visibility probabilities ensures that only valid measurements are used
and is therefore robust to occlusion.

3.4 Computing occupancy

Occupancy and visibility are inextricably coupled through the composition relationship
of equation 2. At this point it is necessary to infer the occupancies given the expected
visibilities in each view. The occupancy of layer i is obtained by marginalising the joint



distribution P(O',V,V’). We omit the extraneous conditional parameters and assume we
are considering pixel x in view one and the corresponding pixel under the relevant layer
alignment, @' (x), in view two. It can be shown that the required marginal density can be
obtained as follows:
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Given that alayer is occluded in both views, we can interpret the conditional proba-
bility, P(O'|V = j,V' =K) : j >i, k> i, asthe prior occupancy probability.

To illustrate the preceding occupancy probability: the first term accounts for layers
visible in both views, the second and third terms account for layers visible only in one
view and therefore occluded in the other and, the last term accountsfor layers occluded in
both views. The joint distribution over visibilitiesin two views was given in section 3.2.

4 View Synthesis

Thelayered representation described provides a compact and convenient rendering model
for novel view synthesis. This section describes how it is exploited for the case of view
interpolation. View interpolation can be formulated as: the linear interpolation of corre-
sponding position and colour. Thus a correspondence, x < x’, interpolated by parameter,
A, correspondsto aposition, x” = (1— A)x+ AX, with colour evaluated as:

1”(x") = (1— ) (X) + Al (X) (20)

The first step is to evaluate visibilities for the novel view. Thisis exactly the same
process as used for the real views except that now the layer alignment parameters are
interpolated to produce novel aspects. The following achieves an affine transformation
which correspondsto interpolating positions x < ®'(x):

D' (A)=(1-A)+ 710 (21)

For each layer, novel aspects are produced by transforming the occupancy proba-
bilities into the new view. Next, in order to render the correct layer at each pixel, the
visihbilities are computed. Finaly, we take the maximum a posteriori decision on which
layer isvisible at each pixel and render according to the following rule:

p_ A=A)PVE) =D)IX)+APV'(X)=D)I'(X) Moy
S T A APV =) 1 APVI(X) =) - T=agmaP(VIed) =)
(22)
which also achieves the natural requirement that we should only use the colour from
visible parts of each layer.
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Figure 4: A pair of synthetically generated sequences with static backgrounds and two
moving foreground objects. (top row) first view and (bottom row) second view. On the
left is the result for the initial frame pair showing occupancy and visibility. On the right
at alater timein which occlusion takes place.

5 Results

We first present an experiment using a synthetically produced pair of image sequences
(figure 4). Each view is composed of a background image with two textured foreground
squares which move over the background. In order to mimic the two-view situation we
give the foreground elements different positions and velocities in each view. This se-
guence is made purposefully difficult in terms of large occlusions between foreground
elements. To illustrate the states of the layered representation we draw edges where each
layer's occupancy region changes from (P(O') > 0.5) to (P(O') < 0.5). Visibility isalso
illustrated by edges where the MAP determined visible label changes. This sequenceis
manually initialised and we deliberately underestimate the right-hand foreground object’s
occupancy prior in the first frame in order to show how the occupancy grows to explain
the data. The large occlusion (around 50%) is handled extremely well and maintains a
viable occupancy representation when not observed.

The next experiment is conducted on real data (figure 5). We obtained two video
sequences of a football match, focusing on the action in the penalty area. The layers
are manually initialised by the rough selection of a number of corresponding regions.
Some occlusion is also apparent in this sequence as well as non-rigid motions and rapid
changes in appearance. The layers are computed over one-hundred frames. There are
severa framesin which the goalie suffers near full occlusion, but despite the difficulties
posed by this sequence, the players occupancies are well represented and tracked.

Finally, based on the computed layers from the football sequence we compute novel
views in figure 6. Intermediate views at three pointsin time are shown. The background
layer is synthesised using an alternative interpolation method [8] which reasonably mod-
els the structure. Because the cameras are fixed the structure (correspondences) for the



Figure 5: Two-view tracking of football player layers. Thetop and bottom rows show the
first and second camera views respectively. Four frames are taken from the results over a
hundred frame sequence and occupancy isillustrated by edges as explained in the text.

background can be precomputed. As can be seen, we achieve photo-realistic, dynamic
novel view synthesis under occlusion and unmodelled motions.

6 Conclusion

We have introduced a new layered representation for multiple views of dynamic scenes
and described an MAP solution for sequentially estimating the parameters of this model.
The result is a procedure which can track multiple moving objects over a pair of views
with acomplete representation of salient properties. In particular, it maintains a persistent
representation of occupancy in spite of occlusionsand integrates measurementsfrom each
view. The motivation for this research was in obtaining a suitable model for dynamic
novel view synthesis. We have shown that for this problem we can produce compelling,
photo-realistic results.

In our current work we are considering several important issues. The number of layers
should be obtained automatically and revised over time within the same framework by ex-
ploiting constraints from domain knowledgein association with model complexity coding
concepts. Structural layers are special cases of dynamic layersin that they are static, and
as such complicated backgrounds can be represented within the same layered framework.
Finally, the practical extension to more than two views offers further interesting viewing
constraints for computing the representation’s parameters.
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Figure 6: Dynamic novel view interpolation. Each row corresponds to a point in time.
Each column correspondsto an interpolated view.
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