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Abstract

Multiple light detection approaches have limited applicability in real life sce-
narios due to the need of certain calibration objects. We propose a novel ap-
proach, the “class-based” image-based multiple light detection, that relaxes
the above assumption to a “class” of calibration objects. We formulate it as
follows: Given a set of images of objects belonging to the same class, sim-
ilar 3D shape and reflectance properties, and illuminated under point light
sources, the purpose is to determine the light distribution of a new object
of that class. This paper concentrates on the class of human faces. Six al-
gorithms are proposed and their performance is evaluated with real images.
Experiments show that a good performance is achieved for up to three lights
using a small database of faces.

1 Introduction

The problem of estimating illuminant directions and their intensities arises in a number of
areas of computer vision. Early research on illuminant direction detection addressed the
case of a single point light source [10, 20]. Recently, the focus has been moved to multi-
ple lights scenarios. Many researchers have proposed algorithms that require a calibration
object with specific properties to be part of the scene to detect the light distribution. Some
of these methods use a Lambertian sphere [17, 19] and some others use mirror-like ob-
jects [4, 11]. The former methods give good results for point light sources, but they cannot
estimate complex light distributions. The latter methods can detect complex illumination
conditions in the expense of an interaction between the calibration object and the envi-
ronment. In addition, both methods require interaction with the scene and the insertion of
a calibration object at the time of capturing the image. To overcome the latter problem,
Marschner and Greenberg [9], and Sato et. al. [13] have suggested algorithms that use
any object of known geometry and reflectance properties. Even though, these algorithms
have reported good performance, and have lifted the restriction of a specific calibration
object, in real life scenarios, accurate geometry and Bidirectional Reflectance Distribution
Function (BRDF) function of the object under inspection are usually unknown, limiting
the applicability of these algorithms.
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In this paper, we propose a statistical method that further relaxes the above assump-
tions. We concentrate on the problem of “class-based” image-based multiple light detec-
tion, and more specifically on the class of human faces. The problem is formulated as
follows: Given a database containing images of different people under different illumi-
nation conditions and an image of a person that does not belong to database, the purpose
is to find the light distribution that illuminates the new face. The main advantage of our
approach is that it is image-based, thus it does not require a 3D geometric model of the
object and an estimation of the BRDF function, but it is based entirely on the statistical
properties of images of objects belonging to the same class.

2 Related work

Statistical approaches have been explored by many researchers for single light detection.
Pentland [10] is the first who assumed a uniform distribution of object normals to detect
the light direction. More recently, some methods have been proposed that use samples of
faces under different light conditions and by applying kernel functions, estimate the light
direction [2, 14]. However, these approaches work only for one-light scenarios.

Several statistical models for object appearance based on 2D images can be found
in literature [16, 3]. However, they concentrate on estimating novel views of an ob-
ject and not on multiple light detection. Closer to our work is that by Riklin-Ravin and
Shashua [12] who proposed a method, the Quotient image, for class-based re-rendering.
They propose an algorithm that estimates the object’s appearance under novel light dis-
tributions. An extension of their approach for different poses can be found in the work
of Stoschek [15]. Sim and Kanade [14] modelled the intensity probability of each point
in an image of a face, given the light direction. The density functions for each pixel are
estimated from the sample images. However, they assume that the density function of
each pixel is independent of the others due to the dimension of the joint probability func-
tion of the pixels in the image. It is found that the algorithms of Sim and Kanade [14]
and Riklin-Ravin and Shashua [12] have a poor performance if the novel light distribution
becomes different from the initial one.

To the best of our knowledge, nobody has tried to detect multiple lights using the prin-
ciple that objects belonging to the same class have similar appearance under the same light
conditions. Some approaches [9, 13] for multiple light detection can be easily extended
to class-based methods using a generalized 3D head model of a face. The disadvantage is
that they require the 3D information to be recovered, and an image synthesis step should
be applied, for which the BRDF function is required. In some areas of computer vision
such as in face recognition, the BRDF of a face is approximated by a Lambertian model.
However, for multiple light detection, specularities give important information for the
light distribution and should not be discarded.

Instead, we propose the use of statistical methods to avoid the expensive step of 3D
reconstruction of faces and the difficult step of rendering the new face under novel illumi-
nation. In this paper we propose and evaluate six algorithms that can be applied to derive
a statistical description of the face appearance under novel illumination conditions. Our
aim is to take into account the features of the face that maximize the information for the
light distribution, and at the same time minimize the variance between images that belong
to different people but are illuminated from the same direction. All the proposed methods



are based on the fact that an image of a face under multiple light sources can be expressed
as the superposition of images that each correspond to a single light direction.

3 Proposed approaches

In the rest of the paper the following notation holds: R denotes the input image under
unknown illumination distribution in vectorized form. Vi is a random vector drawn from
the class of all possible faces illuminated from direction i. Its instances are denoted by
V k

i , where k corresponds to the k th person in the database, and V k
i is this person’s image

in vectorized form.

3.1 Image pre-processing

Initially, an image pre-processing step takes place whose aim is to reduce the variations
of the images for different reasons other than the light variation. The images that belong
to the same light direction class can exhibit variations due to different albedo, shape and
expression. Assuming all the images have been taken under neutral expression, the varia-
tions due to different albedo and shape should be minimized. For the shape difference, a
mask is estimated that masks out large variations of the intensity in the images that belong
to the same light direction class. The images are segmented into blocks and for each block
the “between-class” (SB) and the “within-class” (SW ) scatter matrices are estimated. We
reject blocks whose value of the following criterion [5] is below a threshold:

S = trace(SB)/trace(SW ) (1)

There is a trade-off between the number of retained blocks and the information that the
image contains for the light distribution. The more blocks are selected, the more the
available information for the light distribution is, but also the larger the variation within
the same light direction class. Fig. 1 shows the mask that is applied to the images in our
experiments. The resulting masked images are scaled according to the front-illuminated
images to minimize the effect of different albedo. All images of a particular person in the
database are scaled by the same factor.

3.2 Unknown face

The main idea behind the proposed algorithms is that the effects of multiple lights can be
superimposed. Thus, in the general case where we do not have any knowledge about the
new face, our goal is to minimize the expected mean square error:

T = min
ai

E

{
(R−

N

∑
i=1

aiVi)T (R−
N

∑
i=1

aiVi)

}
, ai ≥ 0 (2)

where R is the new image, Vi is a random vector and corresponds to the light direction
i, and N is the number of the possible light direction classes. E{·} denotes expectation.
After some algebraic manipulation:
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Figure 1: (a) Image mask with 83% of the pixels valid. The parts of the image that are
masked out (eyes and eyebrows) have the most variation. Note that the pixels on the part
of the nose are valid since the specular reflections there give information about the light
distribution. (b) An image of the database with the applied mask.

T = min
ai

{
RT R−2RT

N

∑
i=1

aiE{Vi}+
N

∑
i=1

N

∑
j=1

aia jE{V T
i Vj}

}
, ai ≥ 0 (3)

3.2.1 Approach 1: Small sample size

In the case where the database is small, estimation of E{V T
i Vj} is not accurate. How-

ever, by relaxing the assumptions and assuming that the random variables Vi and Vj are
independent we get:

E{V T
i Vj} = E{V T

i }E{Vj} = E{Vi}T E{Vj} (4)

Then, (3) can be written in the form:

T = min
ai

{
(R−

N

∑
i=1

aiE{Vi})T (R−
N

∑
i=1

aiE{Vi})
}

, ai ≥ 0 (5)

For computational efficiency, E{Vi} can be estimated in a lower dimensional space
by using the KLT transform. The new image R is projected to the same space before the
minimization of (5). It should be noted that estimation of the basis of the reduced space
is done by subtracting the mean image from the data. However, when the images are
projected to that space, the mean image is not subtracted.

3.2.2 Approach 2: Large sample size

The assumption of the random variable independence does not hold in reality, since the
image of a person’s face under a specific light is correlated to the image of the same
person that is illuminated by a different light. In the case of a large database, the accurate
estimation of E{V T

i Vj} would be possible. Thus (6) holds, where K is the number of

images in each class and V k
i denotes the image of the k th person in the i th class.



E{V T
i Vj} ≈ 1

K

K

∑
k=1

(V k
i )TV k

j (6)

It is assumed that each person in the database has one image in every class. The
minimum of (3) is estimated by taking the first derivatives and setting them to zero, with
non-negative constraints for the ai parameters (7).

∂T
∂ai

= −2RT E{Vi}+2
N

∑
j=1

a jE{V T
i Vj} , ∀i (7)

Setting (7) to zero, a system of linear equations with non-negative constraints is ob-
tained. It should be also noted that the second partial derivatives are given by (8), because
E{V T

i Vj} is always positive in the image space since all the Vi vectors have positive ele-
ments.

∂ 2T
∂ai∂a j

= 2E{V T
i Vj} ≥ 0 , ∀i, j (8)

Thus (7) has only one minimum. Due to the large dimension of the image space, a
KLT transform is applied to reduce the space and extract only the necessary information.
Again, the reference image is projected to that space before the application of (7). Also
(8) still holds. Assuming B is an orthonormal basis for the new space and V̂i = BTVi,
V̂j = BTVj are the projected vectors, then (9) holds.

E{V̂i
T

V̂j} = E{(BTVi)T BTVj} = E{V T
i BBTVj} = E{V T

i Ṽj} ≈ E{V T
i Vj} (9)

where Ṽj is the reconstruction of Vj after its projection to the new space. If an adequate
number of eigenvectors is used to represent the new space then Ṽj ≈Vj, yielding (9).

3.2.3 Linear Discriminant approaches

Linear Discriminant approaches have been widely used in face recognition and detec-
tion [1]. Instead of finding the projection that contains the most variation (PCA), these
approaches find a projection that best separates the classes. More specifically, LDA ap-
proaches try to minimize (10), where SW and SB are the within-class and between-class
scatter matrix respectively [5].

J(w) =
wT SW w
wT SBw

(10)

However, due to the large dimension of the image space and the small number of
samples, the LDA approach usually overfits the data. Several approaches have been pro-
posed to avoid the overfitting, the most common one being to project the data to a lower
dimensional space through PCA and perform the LDA in the new space [1]. Several other
variations exist that combine these two steps such as Direct LDA [18] and Enhanced
Fisher Linear Discriminant [8] methods. Others seek a compromise between the PCA
and the LDA, such as the Principal Discriminant Variate (PDV) [7] approach.



The common LDA approach tries to minimize (10) by first diagonalizing the SW ma-
trix and removing the null space. However, the null space of SW may contain useful infor-
mation if the projection of the SB matrix is not zero in that direction. In the Direct LDA
approach [18], the SB matrix is diagonalized first. Then the SW matrix is diagonalized,
and only the most discriminating dimensions are selected.

The Enhanced Fisher Linear Discriminant method [8] has been introduced to improve
the generalization capabilities of the standard FLD methods. It balances the need for
the selected eigenvectors to account for most of the variation of the initial data, and the
requirement that the eigenvalues of the “within” scatter matrix are not too small.

The Principal Discriminant Variate (PDV) [7] method seeks a compromise between
PCA and Fisher’s LDA method, such that the stability of the LDA method is improved
without loss in the discrimination power of the algorithm. In the PDV method criterion
(11) is maximized, where I is the identity matrix, ST is the total scatter matrix and λ ∈
[0,1] determines the the balance between the PCA and the LDA criterion.

J(w) =
wT [λSB +(1−λ )ST ]w
wT [λST +(1−λ )I]w

(11)

In the case where λ = 1, (11) becomes the LDA criterion, and in the case λ = 0, (11)
becomes the PCA criterion. The optimum value for the λ parameter can be estimated
through analysis of the images in the database. Due to the high dimension of the images
in the image-space, a KLT approach for dimensionality reduction is applied before the
PDV method.

We applied the above mentioned LDA approaches to extract the most discriminating
information for multiple light detection from the images. Then, minimization of (5) is
applied by substituting the E{Vi} term with the mean image of each light direction class
in the projected space.

3.3 Known face (front view available)

There are cases where the person under investigation is known and a front-illuminated
image of the same person is available. A technique to generate new illuminated views of
the same person can be applied. Several approaches can be found in literature for “class-
based” re-rendering such as Sim and Kanade’s approach [14] and the Quotient image
approach [12]. In our case, an approach closer to the Quotient image is followed. Having
a database of people illuminated from different directions, a front-illuminated image of
a new person can be expressed as a linear combination of the other front-illuminated
images in the database. Then, a prediction of the new face under different illumination
conditions can be constructed as a linear combination of the images in the database that
correspond to the same light direction, using coefficients that are derived from the front-
illuminated case. Thus, assuming RF is the front-illuminated image (in vector form) of
the new person, and V k

1 (class 1 corresponds to front-illuminated images) is the front-
illuminated image of person k in the database, the coefficients are estimated as (12).

c =
[
V 1

1 ,V 2
1 , . . . ,V K

1

]−1
RF (12)

The new rendering images Ri of the same person under light direction i are estimated
as (13).



Ri = [V 1
i ,V 2

i , . . . ,V K
i ]c (13)

Estimating these images, and using them as reference vectors for each light direction,
the light distribution can be estimated by minimizing (14).

T = min
ai

{
(R−

N

∑
i=1

aiRi)T (R−
N

∑
i=1

aiRi)

}
, ai ≥ 0 (14)

4 Experiments

Experiments with real images are performed to investigate the performance of the above
algorithms. The images are taken from the Yale Face Database B [6]. This contains 10
people, each illuminated from 64 different directions. The light directions are the same
for each person. In the experiments, two of the people are excluded. The first one is
excluded due to not accurate calibration of the lights by [6]. The second one is excluded
because it is the only female in the database and a statistical model is thus difficult to
derive. The images are cropped around their center of gravity to the size of 200 x 160
pixels, resized to 100 x 80 by using bicubic interpolation, and a sparse correspondence
using the coordinated of the eyes, nose, and mouth is applied.

The experiments are performed using the leaving-one-out approach: in each case, all
the 64 images of one person are excluded from the database, and the training is performed
with the remaining 7 people. 100 experiments are performed for each person and for each
light configuration. The algorithms are tested with up to 3 lights. In total 2400 experi-
ments are performed. Only those detected lights with intensity more than a threshold are
taken into account. In the experiments, the threshold is set to 0.2. Detected lights are
grouped together, if the mean vector of them differs less than 25 degrees from each light
vector in the set. It should be noted that the average angle between a light direction in
the database and its closest neighbor is 17.5 degrees. The grouping is done by applying a
greedy algorithm. In the first and second approaches, the images are projected to a lower
dimension space that is defined by the mean images of the light direction classes.

The algorithms are tested for the accuracy of the detected lights (Fig. 2a) and their
variations in the results (Fig. 2b). The accuracy is defined as the angle between the de-
tected light source vector and the corresponding true light source vector. Also, the per-
centage of undetected lights is estimated in all cases (Fig. 3a). Finally, the mean number
of spurious lights for each light configuration is estimated (Fig. 3b).

From the experiments it can be concluded that the first approach which assumes ran-
dom vectors independence gives better results than the approach which takes into account
the correlation between the light directions. This is due to the small database; we believe
that with a large database the latter method will outperform the former one. The algorithm
with the extra information of the frontal view of the face gives the best results as expected.
For the PDV method, different values for the λ parameter are tested and the best results
are acquired for λ = 0 i.e. the PCA approach. For comparative reasons, we tested the
PDV algorithm with λ = 1, which is the Fisher LDA approach (Fig. 2). Moreover, it can
be concluded that the Enhanced Fisher Linear Discriminant method (EFM-1) gives the
best results of all the LDA variations (excluded the PDV method for λ = 0). It should be
noted that all the experiments are automatic without any user interaction.
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Figure 2: (a) Mean angle error in degrees. (b) Standard deviation angle error in degrees.
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Figure 3: (a) Percentage of undetected lights. (b) Mean number of spurious lights.

5 Illumination compensation

A direct application of the proposed algorithms can be seen in image synthesis and Virtual
Reality. The algorithm can be applied in scenes where a frontal view of a face is available
in order to detect the light distribution.

Moreover, having estimated the light distribution, it is possible to compensate for
changes in illumination and re-render the face under a different illumination condition.
This also has an impact to those face recognition applications that have only one image
for each person (i.e. front illuminated images only). In this case, any new image has to
be normalized to the same light conditions before classification, to reduce the effects of
lighting. Several approaches can be found in the literature, the most common ones being
histogram equalization and linear fitting.

We propose an approach close to the Quotient image [12] to estimate the normalized
face image under a target light distribution. Using the first approach, the algorithm esti-
mates the light directions and their relative strength for a new image. Assuming an ideal
class [12] (the 3D shape is the same) and a Lambertian model for the faces, the ratio of
two images illuminated with different lights is independent from the albedo. Based on
this, the image R of the face of a new person under any illumination can be converted to a
front-illuminated image RF by (15) where E{V1} is the mean front-illuminated image.
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Figure 4: (a) Input image illuminated by 2 lights. (b) Front illuminated image (target
image). (c) Illumination compensated image with the proposed approach.

RF =
E{V1}

∑
i:ai>0

aiE{Vi} ·R (15)

The operations in (15) are pixel-wise and performed in the image space. The case
where the denominator is near to zero requires special treatment. If the denominator
for a pixel is close to zero, it means that there is not enough information available for the
algorithm to retrieve the intensity of this pixel under front-illumination. Equation (15) can
be also applied for any target illumination distribution by using the preferred distribution
instead of E{V1}. Fig. 4 shows an example of the initial image, the real front-illuminated
image and the illumination compensated for front light illumination.

6 Conclusion and Future Work

In this paper we propose a novel approach for the multiple light source detection problem
based only on statistical information from an object’s class. The class under investigation
is the class of human faces. Six algorithms are proposed and experiments on real images
show that our approach can detect up to three lights to within 14 degrees mean error,
without any user interaction.

Image synthesis and face recognition are two areas with immediate application of the
proposed approach. In image synthesis, our approach can be used for estimating the light
directions if a person is present in the scene and faces the camera. For face recognition
applications, the illumination compensated images can be used to overcome the problem
of illumination changes.

Future work involves investigation of how synthetic images can be used to extend the
database in order to increase the accuracy. Moreover, we plan to exploit the impact of our
results to face recognition algorithms. Preliminary results show that the application of the
proposed algorithm in the illumination compensation step of face recognition algorithms
outperforms the histogram equalization method. The improvement in the recognition rate
is greater than 10%. Finally, we want to extend our algorithm to faces with different facial
expressions and other object classes.
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