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Abstract

We develop Dynamically Multi-Linked Hidden Markov Models (DML-HMMs)
for interpreting group activities involving multiple objects captured in an out-
door scene. The models are based on the discovery of salient dynamic inter-
links among multiple different object events. A layered hierarchical DML-
HMM is built using Schwarz’s Bayesian Information Criterion (BIC) based
factorisation resulting in its topology being intrinsically determined by the
underlying causality and temporal order among different object events. Our
experiments demonstrate that the performance of a DML-HMM on mod-
elling group activities in a noisy outdoor scene is superior compared to that
of a Coupled Hidden Markov Model (CHMM).

1 Introduction

Activities involving multiple people or objects ought to be modelled simultaneously [3,
9, 6, 1, 10]. Both conventional Bayesian Belief Networks (BBNs) and Hidden Markov
Models (HMMs) are unsuitable for modelling activities underpinned by not only causal
but also clear temporal correlations among multiple hidden processes. For modelling
group or interactive activities involving multiple temporal processes, Dynamic Bayesian
Networks (DBNs) are required [5, 7].

One way to construct a DBN is to extend a standard HMM to a set of intercon-
nected multiple HMMs. A Multi-Observation-Mixture+Counter Hidden Markov Model
(MOMC-HMM) was introduced by Brand and Kettnaker [1] to represent multiple ob-
servations of different objects at each time instance. Vogler and Metaxas [12] proposed
Parallel Hidden Markov Models (PaHMMs) that factorise state space into multiple in-
dependent temporal processes without causal connections. Any interconnection among
temporal processes is implicitly assumed to be by strict zero-order synchronisation, i.e.
simultaneousness. This assumption is generally untrue. Brand and Oliver et al. [2, 10]
exploited Coupled Hidden Markov Models (CHMMs) to take into account the causal con-
nections among multiple temporal processes. They are essentially a fully coupled pairs
of HMMs such that each state is conditionally dependent on states of all processes at the
previous time instance. However, it can be shown that such a fully connected state space
cannot be factorised effectively therefore leading to poor data modelling [5].

In this work, we develop a Dynamically Multi-Linked Hidden Markov Model (DML-
HMM) for the recognition of group activities involving multiple different object events
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in a noisy outdoor scene. The topology of a DML-HMM is intrinsically determined by
the underlying causality and temporal order discovered automatically using Schwarz’s
Bayesian Information Criterion (BIC) based factorisation. In Section 2, we introduce
the general framework of DBNs and in particular a Dynamically Multi-Linked Hidden
Markov Model. In Section 3, we develop a specific model suitable for the recognition
of behaviours of multiple objects involved in cargo loading and unloading activities in an
outdoor airport ramp scene. A realistic outdoor scenario in general offers more challenges
than a well controlled indoor scenario due to factors such as the unstable lighting condi-
tions. Consequently, the detected visual events are often contaminated by noise. To take
into account of these errors when modelling the temporal relationships among events, a
2-layer DML-HMM is proposed as an extension to DML-HMM. We present in Section 4
experiments to evaluate the performance of a CHMM, a 2-layer CHMM, a DML-HMM
and a 2-layer DML-HMM. Conclusions are presented in Section 5.

2 Dynamic Bayesian Networks

For modelling group or interactive activities in a scene involving multiple objects, we
consider that the scene consists of groups of dynamically linked object-centred events
representing significant changes in the image over time caused by different objects in the
scene. An event is represented by a multi-dimensional feature vector. Event detection
in a busy outdoor scene can be subject to large errors due to object occlusion and trajec-
tory discontinuities, as well as a greater degree of sensory noise and poor resolution in
typical outdoor scenes. To address this problem, we wish to model groups of events as
observational input to a Dynamic Bayesian Network (DBN).

Dynamic Bayesian Networks (DBNs) are Bayesian Belief Networks1 (BBNs) that
have been extended to model time series data [5, 7]. More specifically, hidden nodes have
been introduced in the topology of DBNs to represent hidden temporal states. This is
similar to that of a sequential graph model like HMMs. A DBN � is described by two
sets of parameters �����. The first set � represent the structure of the DBN which
include the number of hidden state variables and observation variables per time instance,
the number of states for each hidden state variable and the topology of the network (set
of directed arcs connecting nodes). The �th hidden state variable and the �th observation
variable at time instance � are denoted as � ���

� and����
� respectively where � � ��� ���� ���

and � � ��� ���� ��� and �� and �� are the number of hidden state variables and obser-
vation variables respectively. The second set of parameters� quantify the state transition
models 	 ��

���
� �	
��

���
� �, the observation models 	 ��

���
� �	
��

���
� � and the initial state

distributions 	 ��
���
� � where 	
�����

� � are the parents of � ���
� and similarly, 	
�����

� � for

observations. In this paper, unless otherwise stated, � ���
� are discrete and �

���
� are con-

tinuous random variables. Each observation variable has only hidden state variables as
parents and the conditional probability distributions (CPDs) of each observation variable
are Gaussian for each state of its parent nodes.

As shown in Figure 1(a), a standard HMM has only one hidden state node and one
observation node at each time instance modelling a single temporal process, which of-

1BBNs are also known as Bayesian Networks, Belief Networks or Directed Acyclic Graphical (DAG) Mod-
els. They are special cases of graphical models which combine probability theory and graph theory to address
two important issues in data modelling: uncertainty and complexity.
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Figure 1: CHMMs as extensions of a standard HMM. Observation nodes are shown as
shaded circles and hidden nodes as clear circles.

ten results in the high dimensionality of both the state space and observation space and
requires a large number of parameters if it is to model multiple temporal processes si-
multaneously. Unless the training data set is very large and relatively ‘clean’, poor model
learning is expected. To address this problem, various topological extensions to the stan-
dard HMMs can be considered to factorise the state and observation space by introducing
multiple hidden state variables and multiple observation variables. For example, Brand et
al. [2] proposed Coupled Hidden Markov Models (CHMMs) to take into account the tem-
poral causal relationships among hidden state variables (Figure 1(b)). It is assumed that
each hidden state variable is conditionally dependent on all hidden state variables in the
previous time instance. CHMMs require the observation space to be factorised according
to their temporal processes.

2.1 Dynamically Multi-Linked Hidden Markov Model

Instead of being fully connected as in the case of a CHMM, a Dynamically Multi-Linked
Hidden Markov Model (DML-HMM) aims to only connect a subset of relevant hidden
state variables across multiple temporal processes. This is achieved by factorising the
state transition matrices using Schwarz’s Bayesian Information Criterion [11]. The fac-
torisation reduces the number of unnecessary parameters and caters for better network
structure discovery.

We wish to simultaneously learn the causal and temporal relationships among events
by finding a DBN � � ����� that can best explain the observed events�. Such a best
explanation is quantified by the minimisation of a cost function. For a Maximum Likeli-
hood Estimation (MLE), the cost function is � ��	 ��������, the negative logarithm
of the probability of observing� by model� where�� are the parameter settings for
the candidate structure � that maximise the likelihood of the data. �� are estimated
through Expectation-Maximisation in order to determine the distribution of the hidden
states and observations. A MLE of the structure of � in the most general case results
in a fully connected DBN, which implies that any class of events would possibly cause
all classes of events in the future. Therefore adding a penalty factor in the cost func-
tion to account for the complexity of a network is essential for extracting meaningful and
computationally tractable causal relationships. To this end, we adopt Schwarz’s Bayesian
Information Criterion (BIC) [11] to measure the goodness of one hypothesised network
model against that of another in describing a given data set. For a model� � parameterised
by a ��-dimensional vector���

, the BIC is defined as:

�� � �� ��������
� 	�� ���� (1)



where �����
� is the maximal likelihoods under��, �� is the dimension of the param-

eters of �� and � is the size of the dataset. For our model of an activity consisting of a
group of events, �����

� can be written as:

�� ���

���
��
�
�
���
�

��
�

���
���

	
�
�
���
�

� ��
���

���
���

	
�
�
���
� �	
��

���
� �
� ��
���

���
���

	
�
�
���
� �	
��

���
� �
��	



��	
�


where ���� are hidden state variables, ���� are events as observations, and 	
�� ���� and
	
������ are the parents of � ��� and ���� at the previous time instance respectively. We
consider that the number of hidden processes is the number of event classes extracted
through automatic model order selection in the event classification process (see Section
3 for details on event detection and classification). We also consider two states for each
hidden state variable, i.e. true and false. The search of the optimal model � that produces
the minimal BIC value also involves parameter learning. More specifically, for each can-
didate structure, the corresponding parameters are learned iteratively using EM. The E
step, which involves the inference of hidden states given parameters, can be implemented
using an exact inference algorithm such as the junction tree algorithm [8]. After parame-
ter learning the BIC value can be computed using Equation (1) where �����

� has been
obtained from the M step of EM for parameter learning. Alternatively, parameter and
structure learning can be performed within a single EM process using a structured EM al-
gorithm [4]. It is worth mentioning that for our case, the structure search space is limited
since the number of states for each hidden variable has been fixed.

Comparing DML-HMM with CHMM, it is clear that DML-HMM will always con-
sist of a more optimised factorisation of the state transition matrices and most likely have
less connections among hidden state variables. This allows for more tractable computa-
tion when reasoning about complex group activities. In addition, a more subtle but per-
haps also more critical advantage of DML-HMM over CHMM is its ability to cope with
noise. Given sufficiently noise-free data, it is possible for CHMM to learn the correct
relationships among coupled hidden temporal processes. However, with noisy data, since
probability propagation travels freely among all the hidden state variables during the EM
parameter estimation, CHMM can capture structures heavily biased by noise, especially
when there are large number of hidden processes. This will be shown in our experiments
in Section 4.

2.2 Activity Graph of High-Level Semantics

The temporal relationships among events are quantified by the structure and parameters
of DBNs learned using the training data. Once trained, DBNs aim to encode the under-
standing of the dynamics of the scene. The parameters of the trained DBNs can thus be
utilised to extract high level semantics from the scene. One of the important semantics
we wish to extract is the important stages of the activity at the correlated events level. To
this end we automatically generate an activity graph from the transition matrices of the
trained DBNs (see Figure 4). Each node in the graph corresponds to an important activity
stage and the arcs among nodes represent the temporal order of these activity stages. For
models which have multiple hidden processes and hence multiple transition matrices, it



is easy to convert their transition matrices into a single transition matrix with each state
corresponding to the occurrences of all event classes.

3 Modelling Airport Cargo Activities

Let us now consider the specific problem of modelling group activities in a complex out-
door airport ramp scene based on discrete object event recognition. What constitutes an
event that reflects a significant change in a scene is to be detected automatically over time
without manual labelling or top-down hypothesising. To this end, we adopt an approach
proposed by [13]. In the airport scene with ground based cargo loading and unloading op-
erations, four different classes of events were automatically detected. It can be observed
that they correctly correspond to four key elements that contribute towards a frontal cargo
service activity. They are movingTruck, movingCargo, movingCargoLift and
movingTruckCargo (Figure 2). It is also observed that the temporal structure of
events follows a certain repeated pattern, which is referred as an activity unit. It is noted
that different classes of events can occur simultaneously. It is also true that such an
event detection mechanism makes mistakes. Mis-detection and wrong labelling can be
caused by discontinuous movement and closeness of different objects. This can only be
effectively addressed by interpreting groups of autonomous events in correlation and as a
result, explaining away the errors in the detection and labelling of individual events.

(a)

(b)
Figure 2: Event detection and classification during an aircraft cargo unloading activity.
(a) Detected and classified events with the cargo service area highlighted. (b) Highly
overlapped events were detected over time, including movingTruck, movingCargo,
movingTruckCargo and movingCargoLift, illustrated using green, blue, red and
cyan bounding box respectively.

For modelling the airport cargo loading/unloading activities with four different classes
of events, we exploit a DML-HMM network topology as illustrated in Figure 3(b). The
topology of the DML-HMM are learned from training data using the method described
in Section 2.1. The causal relationships discovered among different classes of events
are embodied in the topology of DML-HMM. Figure 3(a) shows the typical temporal
structure for the airport cargo unloading activity obtained by observation. It can be seen
that most causal relationships among different classes of events have been discovered
correctly. Some undesirable connections among nodes in Figure 3(b) may be caused
by the errors in event detection and classification. Each of the four hidden state vari-
ables of the DML-HMM shown in Figure 3(b) has two states and takes on value � when
corresponding class of event occurs and � otherwise. Each observation variable is con-



tinuous and given by a 7D feature vector representing events. The distributions of each
observation variable are Gaussian with respect to each state of its discrete parent nodes.
For model training, the distributions of the detected autonomous events (obtained by our
event classifier [13]) were used to initialise the distributions of the observation vectors.
The priors and transition matrices of states were initialised randomly. With a trained
model, the most important state transitions that minimised Criterion (2) were discov-
ered as 	 ��
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Figure 3: (a) An illustration of the temporal structure of the cargo unloading activity in a
typical scenario. (b) and (c) show a DML-HMM and a 2-layer DML-HMM (2L-DML-
HMM) for modelling four temporal processes corresponding to the four different classes
of object events involved in the aircraft cargo loading/unloading activities respectively.
The topologies of (b) and (c) were learned from the same data set.

It has been noted that the factorisation in the observation space, which is achieved
by the event classifier, would have a significant effect on the states of hidden variables
when the observation functions are continuous [5]. The event classifier simply ignores
the temporal and causal relationships among events. This factor, together with the noisy
nature of the video signal, results in inaccurate factorisation in the observation space and
thus erroneous state inference. One way to solve this problem is to treat the factorisation
itself as an output of the hidden state variables corresponding to the occurrence of events.
Taking into account computational efficiency, we introduce a second layer of hidden vari-
ables in the topology of DML-HMM and get a 2-layer DML-HMM (2L-DML-HMM). A
2L-DML-HMM for modelling the airport cargo activities is shown in Figure 3(c). Hid-
den state variables ����

� � ���� �
���
� are two-state discrete variables, each of which has one

discrete parent and one continuous child. A regulative factor � is introduced such that the
state transition matrices 	 ��

��	��
� ��
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� are written as:
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These transition matrices are fixed during learning where � reflects the confidence on
the accuracy of the event classifier and has a value in the range of ���� ��. In particular,



� � � indicates that we fully trust the event classifier and � � �� implies that the event
classifier is totally untrustworthy. In practice, � is computed as:

� �
	�	
� 	 	���������

�	���������
(2)

where 	�	
� and 	��������� are the maximal likelihood of observing the detected events
data and a well separable data set by the event classifier respectively. This well separable
data set is artificially created such that it has the same number of data, same dimension-
ality and same number of classes as the detected event data. The data distribution of
the well separable data set is mixtures of Gaussian. Structure and parameter learning of
2L-DML-HMM can be performed in the same way as that of DML-HMM (see Section
2.1). The topology of the 2L-DML-HMM shown in Figure 3(c) was learned from the
same training data set as the DML-HMM shown in Figure 3(b). As can be seen, there are
less unnecessary cross temporal process connections in the topology of 2L-DML-HMM
compared to that of DML-HMM, which indicates that the 2L-DML-HMM is less affected
by the noise in the training data.

4 Experiments

Experiments were conducted on the modelling of airport cargo loading and unloading
activities using CHMM, 2L-CHMM (2-layer CHMM with a second layer of hidden state
variables introduced in the topology similar to that of 2L-DML-HMM), DML-HMM and
2L-DML-HMM and testing their comparative performances. A fixed CCTV analogue
camera took continuous recordings over a two weeks period. The video was sub-sampled
by a factor of 8. After digitisation, the final video sequences have a frame rate of 2Hz.
Each image frame has a size of 320�240 pixels.

Our database for the experiments consists of 24 (10 loading and 14 unloading) con-
tinuous activity sequences selected from the 2 weeks recording giving in total 44490
frames of video data that covers different time of different days under changing lighting
conditions, from early morning, midday to late afternoon. The length of each sequence
was between 828 to 3449 frames, covering 7-29 minutes video footage. For the purpose
of testing, we also extracted labelled ground truth by manually identifying that each se-
quence typically had 3–9 repeated loading or unloading activity units and the entire data
set of 24 sequences captured in total 140 activity units including 58 loading and 82 un-
loading respectively, ranging 73–382 frames per activity unit. Typically sequences taken
in the early morning contained indistinct objects, reflecting poor lighting, whilst those
taken during the midday had strong sunshine causing strong shadows in the scene. Fast
moving clouds, exacerbated by the low frame rate of 2Hz, were common during the day-
time, which resulted in very unstable lighting condition and discontinuous object motion.
The camera was more than 50 meters away from the activities, giving low resolution im-
ages of the objects concerned. In the following we present results on (1) model training,
(2) activity graphs, (3) comparative performance evaluation on activity recognition, and
(4) explaining away errors in autonomous event detection.
Model training — Among the 24 sequences, there are 8 clean loading and 8 clean un-
loading, 2 noisy loading and 6 noisy unloading sequences. By ‘clean’ we imply that the
lighting change in the duration of a sequence is tolerable with limited error in event detec-
tion. We used different combinations of different subsets from the 24 sequences data set
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Figure 4: For each sub-figure, left: State transition matrices for the unloading activity
learned from noisy training set 1. Each entry corresponds to the transition probabilities of
two states (black for one and white for zero) and each state corresponds to the occurrence
of one or more different classes of events. States ‘T’, ‘C’, ‘TC’, ‘L’ and ‘NON’ correspond
to movingTruck, movingCargo, movingTruckCargo, movingCargoLift
and no-activity respectively. ‘T&C’ refers to movingTruck and movingCargo
occurring simultaneously, etc. Right: Activity graphs automatically generated from the
state transition matrices. We consider states that have lower probability of staying to
themselves than transferring to other states transit states. These transit states are caused
mainly by noisy and are thus not included in the activity graph to make the graph concise.

to train the models in order to avoid any bias in the results. Two different types of model
training were conducted as follows. Case I: Training with clean sets. We randomly split-
ted the 16 clean sequences into 4 small training sets for which each set, consisting of 4
loading and 4 unloading sequences with average of 40 activity units, was used for train-
ing. The other clean sequences were used for testing. Each set has on average 14929
frames with shortest being 13637 and longest being 16221. The experiment was repeated
4 times with a different set. Automatic event detection was performed on each set and
four different classes were automatically detected per training set (Figure 2). These de-
tected events (represented by 7D feature vectors) were then used as the observational
input for training a DBN. The loading and unloading sequences in each set were used to
train separately two sets of model parameters based on the same topology without man-
ual activity unit segmentation in the training process. Case II: Training with noisy sets.
Four training sets were constructed using randomly selected 4 clean loading and 4 clean
unloading sequences as above, but this time also included the 2 noisy loading and 6 noisy
unloading sequences in each set. Each set had on average 28346 frames with shortest
being 26269 and longest being 30853. The experiment was repeated 4 times again. The
regulative factor � for 2L-CHMM and 2L-DML-HMM ranged from ���
 to ��� for our
experiments.
Activity graphs — Figure 4 shows four different activity graphs automatically generated
from the trained state transition matrices of CHMM, DML-HMM, 2L-CHMM and 2L-
DML-HMM for unloading activity. They were trained using a noisy data set from Case
II. From these activity graphs, important stages of activities are shown to be discovered



by the models. Although these transition matrices were initialised randomly with no
constraint on their transitions, the learned transition matrices have structures with sparse
connections. It can be seen that among the four, the activity graph generated by DML-
HMM and 2L-DML-HMM were less affected by noise with sparser connections showing
better factorised state spaces compared to those of CHMM and 2L-CHMM respectively.
It is also clear that models with two layers of hidden variables were less affected by noise
and revealed better activity structure compared with those with only one layer.
Activity recognition — The trained four different types of models were tested for activity
recognition. The models trained using each of the clean sets and each of the noisy sets
were tested on the test set consisting of the remaining sequences. Tables 1 and 2 show
comparative testing results. As expected, given sufficiently large sets of clean data for
training, all the models were able to give a fairly high average recognition rate over the 4
testing sets (Table 1). However, if noisy data were used, the average recognition rate over
the 4 testing sets of CHMM dropped significantly compared to those of DML-HMM, 2L-
CHMM and 2L-DML-HMM. The results show that models with two hidden layers had
higher recognition rate compared to those with only one layer. It can also been seen from
Table 2 that given noisy training data DML-HMM was superior compared to CHMM with
either one or two hidden layers.

Table 1: Recognition rate on clean data sets.

CHMM DML-HMM 2L-CHMM 2L-DML-HMM
���� ���� ����� �����

Table 2: Recognition rate on noisy data sets.
CHMM DML-HMM 2L-CHMM 2L-DML-HMM
����� �
��� ����� �����

Explaining away errors in autonomous event detection — DBNs can also be used to
perform event prediction and explanation. Here we show a simple example of how DBNs
can be utilised to explain away errors in event detection. Figure 5(a) shows the ground
truth of event occurrences for two consecutive activity units from the test set which lasted
370 frames. The detected autonomous events contained fair amount of errors as shown in
Figure 5(b). The hidden states of four different DBNs were used to infer (generate) the
occurrences of events and their classes. Figure 5(e) and (f) show that the event detection
results were improved when two layer models were employed. The result from Tl-DML-
HMM (Figure 5(f)) was the nearest to the ground truth.

5 Conclusions

In this paper, we present an approach using Dynamic Bayesian Networks (DBNs) and in
particular Dynamically Multi-Linked Hidden Markov Models (DML-HMMs) to interpret
group activities involving multiple objects captured in an outdoor scene. A DML-HMM
and a 2-layer DML-HMM are built using Schwarz’s Bayesian Information Criterion based
factorisation resulting in its topology being intrinsically determined by the underlying
causality and temporal order among different object events. Experiments are presented
to demonstrate that their performances on modelling group activities in a noisy outdoor
scene are superior compared to those of a Coupled Hidden Markov Model (CHMM) and
a 2-layer Coupled Hidden Markov Model (2L-CHMM). Our future work will be focused
on abnormality detection based on the automated segmented activity units.
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Figure 5: Improving autonomous event detection accuracy using different DBNs.
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