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Abstract

Target detection is one of the important elements of Automatic Target Recog-
nition (ATR) systems. In this paper, we propose a new approach to detect out-
liers in radar returns, based on modelling the background using an empirical
distribution rather than a parametric distribution. The key innovation lies in
the use of the Characteristic Function (CF) to describe the distribution. The
experimental results show a promising performance improvement in terms
of detection rate and lower false alarm rate, compared with the conventional
Gaussian model which employs the Mahalanobis metric as a distance func-
tion.

1 Introduction

Automatic Target Recognition (ATR) is a process of detection, tracking and recognition
of targets in a cluttered background. Typically, target acquisition and classification are
accomplished by a computer analysis of data, usually in the form of image sequence,
which is extracted from any of a variety of sensors and platforms. These images are
subjected to numerous processing steps and algorithms, involving a wide range of tools
[2]. An ideal system should keep the false alarm rate to its minimum, while maintaining
high detection of true targets. This is a challenge that has to be tackled in the target
detection stage which is one of the most important steps in constructing a reliable system.

Pattern recognition is the most popular approach that has been used to solve the ATR
problem. The method is based on the hypothesis that target features lie in regions of
a multidimensional feature space easily separable from its background [1]. Statistical
pattern recognition uses a probabilistic model to underpin classification algorithms where
the most widely used model is the Gaussian distribution. Often this assumption is made
purely for the convenience of mathematical tracktability.

The novelty of this work is three fold: First of all we adopt the empirical distribution
as a model of the background, rather than making unwarranted assumptions. Second, we
propose a novel method of estimating the distribution based on the characteristic function
approach. The features used are extracted using Principle Component Analysis developed
in [5, 6]. The target detection problem is viewed as an outlier detection problem, as in
[5, 6]. A novel metric is developed to detect outliers directly in the support domain of the
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Figure 1: The operation of empirical characteristic function.

characteristic function. A few modifications have been made to the technique presented
in [5, 6] so as to improve performance.

2 Characteristic Function

Recently, there is growing interest in applying methods using characteristic function (CF)
among the signal processing community [7]. The interest stems from the need to apply
signal models more complex than the Gaussian, which are more conveniently charac-
terised through a CF rather than probability density function (PDF). The CF,φ(t) is by
definition a Fourier transform of a density functionp(x) [8]

φ(t) =
∫ ∞

−∞
p(x) ·ejtxdx (1)

whereejtx denotes a complex exponential. The simplest estimator of the CF is the sample
or empirical characteristic function (ECF) which is defined as

φ̂(t)
4
=

1
N

N

∑
i=1

ejtxi (2)

wherexi ; i = 1,2, ...,N represent independent and identically distributed (IID) random
variable (RV) with CFφ(t). The ECF is directly calculated from the empirical distri-
bution andφ̂(t) is computable for all value oft ∈ R. At a givent, φ̂(t) is an RV and
φ̂(t),−∞ < t < ∞ is a stochastic process. The ECF of an RVX can be represented by the
cosine and sine function as

φ̂(t) =
1
N

N

∑
i=1

cos(tXi)+ j sin(tXi). (3)
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Figure 2: A comparison of distance between outlier and ECF for dataX and dataY.

The operation of the estimator ECF is illustrated in Figure 1 [4]. For datax1,x2, ...,xN

and a givent, the points(ci ,si) = (costXi ,sintXi) fall on the unit circle. The ECF of an
RV is thus the coordinatewise average of these points which is denoted in Figure 1 as
(c̄, s̄). The modulus of the ECF|φ̂(t)| is simply its distance from the origin, also known
as the resultant length. From the figure, it can be easily seen that att = 0 the coordinate
(c̄, s̄) = (1,0) and at−∞ < t < ∞, |φ̂(t)| ≤ 1.

Without loss of generality, let us select a small value fort and consider two sets of
dataX andY , having the same mean but different variance, in such a way that

Var[X] < Var[Y], (4)

and assign an outlier to the data, for examplex1 = y1 = 10. The plot of pointci againstsi

for these data is shown in Figure 2.
A small value oft was selected to maximise the spread between the outliers and the

background of the data in this complex plane. As expected, the outliers of the data (which
are denoted by× in the figure) fall at the ’tail’ of the plot, while its background clusters
together. It is interesting to note that the Euclidean distanceJx between the outlier and its
ECF for the first data is larger than the Euclidean distanceJy between the outlier and its
ECF for the second data. This method thus can be used as a distance measure, where a
distance from any random variablexi to its background in one dimensional case can be
calculated using the Pythagoras theorem,

J2
i = (c̄−ci)2 +(s̄−si)2 (5)

whereci = cos txi and si = sin txi are calculated from the sample. Since ECF is an
unbiased estimator of the corresponding CF, the point(c̄, s̄) could either be the ECF or
theoretical CF when the underlying distribution of the RV is known.

In multidimensional analysis, the scaled Euclidean distance has been used as it weights
the difference in a given dimension according to its mean and covariance. By normalising
the data to its mean and covariance matrix, the distance is calculated as [3]

dM(x,y) =

[
m

∑
i=1

(xi −yi)2

σ2

] 1
2

(6)
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Figure 3: Contour of equal distance for bivariate data. Proposed method is on the left and
Mahalanobis is on the right.

which is known as the Mahalanobis metric. Thus following from the univariate case, the
distance for multidimensional data can be calculated by

Ji =
m

∑
i=1

(Φ−costX̂ i) (7)

whereX̂ i is the normalisedm−dimensional vector, andΦ is the real component of the
ECF or theoretical CF, as CF of a zero mean process is always real. In many cases, fea-
tures can be assumed independent, thus instead of using the multi-dimensional CF, the
vector of one-dimensional characteristic function can be used, which is a great advantage
for a system employing forward feature selection method. Figure 3 shows the contour of
equal distance of the proposed distance function for a 2-dimensional case. The bivariate
data was generated forXN=3000∼ N (0,1), with a positive correlation. The compari-
son shows that the proposed method performs similarly to the Mahalanobis distance for
bivariate normal data.

3 Target Detection

The ATR problem that we are facing is to detect a multiple target on the sea surface. The
data was made available by DERA Farnborough. It consists of a sequence containing
about twenty frames which have been artificially generated using a standard ray-tracing
package. It represents the scenario of a sensor attached to a ship looking out over the
sea with five targets inserted into this sequence. The locations of these targets are given
by the ground truth (training data). The target detection problem is viewed as an outlier
detection problem, where anything that does not normally occur in the background can be
considered as a potential target. The three basic steps proposed in [6] have been applied
here:

• Model generation involving feature extraction by Principle Component Analysis.



Figure 4: The results for the first 6 frames obtained using the proposed method (5 frames
temporal average).

• Model optimisation whereby the model and model size are optimised using a se-
quential floating forward selection search based on training data.

• Target Detectionwhere outliers are identified on a pixel by pixel basis by checking
whether the features are accurately described by the model.

In the target detection stage, the proposed distance function employing the ECF of the
data has been used. The probability of detection was set to 0.99 to ensure that targets are
not missed in the feature selection stage. In order to reduce the comparatively high false
alarm, the geometric mean of 5 consecutive thresholded images is calculated, which is
given by

µg =

[
t

∏
i=1

xi

] 1
t

(8)

wherexi is the dilated and thresholded image ini frame. This method of temporal tracking
has an advantage that the resultant image is already linearly scaled between 0 and 255.

4 Results

Figure 4 shows the temporally averaged results by using the proposed method. The corre-
sponding results using the Mahalanobis distance are given in Figure 5. It can be seen that
all five targets have been detected by using both methods, as the probability of detection
was set close to100%. However, the probability of false alarm for Mahalanobis distance
is much higher than for the proposed method. The average false-positive rate for Ma-
halanobis distance is 10.36 which decreases dramatically to 1.45 by using the proposed
distance function. A plot of false positive versus frame number is given in Figure 6(a).

The good result achieved by using the proposed method motivate us to use a smaller
number of frames in the temporal averaging stage. This greatly improves the response
time, thus providing us with the earliest possible warning. In the next experiment, three



Figure 5: The results for the first 6 frames obtained using Mahalanobis distance (5 frames
temporal average).

frames were used in the temporal averaging stage with the results shown in Figure 7 and
8 for the proposed method and Mahalanobis distance, respectively. It can be seen that
the proposed method performed better than the Mahalanobis distance. The average false-
positive rate for the proposed method is 2.54 while for the Mahalanobis distance, the
average is 61.82. A plot of false positive versus frame number is given in Figure 6(b).

5 Conclusion

A new statistical distance function to measure the relationship of a data point to its back-
ground has been proposed. The method not only utilises the mean and variance of the
data, but also takes into account the characteristic function of the data. A comparison
of global distance for bivariate normal data shows that the proposed method performs
similarly to the Mahalanobis distance.

The advantage of the proposed method is that it does not require one to assume that
the data is normally distributed. One can choose to use the theoretical characteristic func-
tion, when the distribution of the data is known a priori. In other cases, the empirical
characteristic function can be used which provides a distribution-free distance function.

We have demonstrated that the proposed method performed better than the Maha-
lanobis distance, for target detection application. With a similar parameter setting, a sig-
nificantly lower false-positive rate was observed. It is interesting to note that the proposed
method performs similarly (in some cases better) to the 3D-PCA method described in [5].
In the 3D-PCA method,d consecutive frames were used to construct a three dimensional
filter in the feature extraction stage. Therefore, in a real life situation, one has to wait
until three frames are captured before any feature processing step can be made. With the
development of the CF/ECF based method, the 2D-PCA filter described [5] can be used,
yet the results are similar to the 3D-PCA.

With the great performance improvement shown by the proposed method, the number
of frames used in the temporal averaging stage can be reduced. With a reduced number
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Figure 6: Plots of false positive.

Figure 7: The results for the first 3 frames obtained using the proposed method (3 frames
temporal average).

Figure 8: The results for the first 3 frames obtained using Mahalanobis distance (3 frames
temporal average).



of frames, the movement of the targets from one frame to another may not be too sig-
nificant, thus avoiding the need to dilate the thresholded image. This will not only assist
the computation, but also the target detection using the original ’undilated’ image will
reduce the false alarm rate significantly. It has been found that some of the non-targets
appear in approximately the same location in the consecutive frames, thus dilation will
not only reward the real targets, but also the false ones as well. Furthermore, a fewer
frame will mean a quicker detection (albeit computational complexity) thus providing an
earliest possible warning.
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