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Abstract

Remote sensing imagery plays an important role in many fields. It has
become an invaluable tool for diverse applications ranging from cartography
to ecosystem management. In many of the images processed in these types
of applications, semantic entities in the scene are correlated with textures
in the image. In this paper, we propose a new method of analysing such
textures based on adaptive probabilistic models of wavelet packets. Our ap-
proach adapts to the principal periodicities present in the textures, and can
capture long-range correlations while preserving the independence of the
wavelet packet coefficients. This technique has been applied to several re-
mote sensing images, the results of which are presented.

1 Introduction
The automatic detection of regions of interest in remote sensing images is an important
problem, with a wide variety of possible applications, including cartography, land use
monitoring in agricultural areas, and assessment of environmental damage caused by nat-
ural disasters. Texture is frequently a salient cue in the analysis of such images, often
being strongly correlated with semantic entities in the scene. Distinguishing a grass cov-
ered field from one which has been planted with trees, for example, is a task to which
texture analysis is naturally suited.

Over the years numerous approaches have been proposed to tackle the problem of
texture description. For a full overview, see [12] and [11]. One approach that has been
extremely active in recent years is the use of wavelets [10, 9]. An example is the Hidden
Markov Tree technique developed by [4], which describes the interscale dependencies of
a standard wavelet decomposition. Others have investigated the use of wavelet packets as
a texture analysis tool. In [8], packets were used in a classification experiment on natural
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textures. Since [5], attempts have been made to adapt the wavelet (or wavelet packet)
decomposition to the underlying structure of the texture, for example [3] and [1], but
these methods have not been developed within a coherent probabilistic framework.

In [2], we introduced new, probabilistic models of texture, which were successfully
applied to the segmentation of Brodatz mosaics. In this paper, we describe further devel-
opments of these texture models and a new segmentation method, as well as presenting
results on remote sensing images. As stated, we address the issue of texture description
within a probabilistic framework. Starting from a probability measure on the infinite tex-
ture, which we assume here to be Gaussian, we derive the measure for the texture on a
finite region. This leads naturally to a class of adaptive wavelet packet models that cap-
ture the structure of a given texture, for example its principle periodicities, in a manner
analogous to the Wold decomposition [7]. A simple classification rule enables pixelwise
classification of the image while retaining the advantages of more complicated prior mod-
els. We consider supervised segmentation because it is methodologically well-defined.

The paper is organized as follows. We introduce our texture model in Section 2 and
provide an outline of its development. In section 3, we describe how model parameters
are estimated, and discuss the adaptive nature of our technique. Section 4 describes the
segmentation procedure used. In section 5, we present results on several remote sensing
images. Finally, in section 6, we conclude and discuss future work.

2 Modelling Planar Parallel Texture
One of the characteristics of planar texture, perhaps its defining characteristic, is that it is
infinitely extendable, so that images of the texture are functions on an infinite (or at least
very large) domain D∞. A model of such a texture is given by a probability measure on
the space of such images. We denote such a measure by:

Pr(I|k ≡ l,Kl) (1)

where I is the infinite image; Kl is the set of parameters of the model of texture l ∈ L, the
set of textures; and k : D∞ → L is the class map, which here takes every pixel to class l.

In practice however, when we analyse and segment textures, we work with images
which are defined on finite regions. This means that one needs, not the distribution on the
space of infinite images, but that on the space of images defined on a finite region. We
thus need to marginalise equation (1) over the values of the pixels outside this region.

In this paper, as mentioned in section 1, we choose to model textured images using a
Gaussian measure. In abstract notation, this can be expressed as:

Pr(I|·) = |F/π|1/2e−〈I−ν |F|I−ν〉 (2)

where 〈I|J〉 is the inner product of the functions |I〉 and |J〉 in the space of images; F |I〉
means F acting on |I〉; ν is the mean; and |F | is the determinant of the operator F .

Given a region R ⊂ D∞, we can split the operator F up into four parts: FRR, FRR̄, FR̄R,
and FR̄R̄; these correlate R with itself, R with R̄, its complement, R̄ with R, and R̄ with R̄
respectively. Similarly, the mean can be split into two parts, νR and νR̄. Marginalising
over the values of the pixels in R̄ gives the following probability measure for the image IR
on the finite region R:

Pr(IR|·) = |GR/π|1/2e−〈IR−νR|GR|IR−νR〉 (3)



Figure 1: Fourier domain splits corresponding to quad and binary vertices.

where GR ≡ FRR − FRR̄

(

FR̄R̄

)−1 FR̄R. The computational complexity of evaluating this
operator requires that we diagonalise GR.

2.1 Diagonalisation of the operator GR

If we can find a set B = {|a〉 : a ∈ A}, where A is an index set, of functions on the region
R such that:

1. The set {iR|a〉 : a ∈ A} of infinite images that are equal to |a〉 in R and to zero in R̄
are eigenfunctions of the operator F (with eigenvalues fa);

2. The set B forms an orthonormal basis for functions on R;

then we can diagonalise the operator GR. The first condition implies that the support
of FiR|a〉 lies in the region R. Thus the second term in GR is zero, and the first term
becomes fa|a〉. Hence 〈a|GR|a〉 = fa〈a|a〉. The second condition then means that GR is
diagonalised by B, allowing us to write our measure as:

Pr(IR|·) = ∏
a∈A

( fa/π)1/2e−∑a∈A fa〈IR−νR|a〉〈a|IR−νR〉 (4)

How do we find such a set B?

2.2 Using Wavelet Packets
As the texture could appear in the image arbitrarily translated, our measure must be trans-
lation invariant. This condition has two consequences. The first is that the mean ν must
be constant, so that its Fourier transform is a delta function: ν(k) ∝ δ (k). The second is
that F must be diagonal in the Fourier basis, F(k,k′) = f (k)δ (k,k′), which means that
our measure is now characterized by a function f on the Fourier domain:

Pr(I|·) = |F/π|1/2e−∑k f (k)(I∗(k)−ν∗(k))(I(k)−ν(k)) (5)

For an arbitrary function f (k), it is very hard to find a set B that satisfies the conditions
in section 2.1. We thus want to choose a set of functions f that is varied enough to
capture the structure present in the texture, but limited enough that we can satisfy the
conditions. To this end, consider the set T of rooted trees in which each vertex has either
four children, or two children and a label in the set {H,V}. Each such tree corresponds to
a dyadic partition of the Fourier domain, where the leaves correspond to the elements of
the partition. A vertex with four children corresponds to a standard quad tree split, while
a vertex with two children corresponds to a two-way split in either the x (H) or the y (V )
direction, but not both. The three possible splits are shown in figure 1.



Based on the set T , we define a set of functions F =
⋃

T∈T
FT , where FT =

{ f : f is piecewise constant on T}. Given a tree T ∈ T , and a mother wavelet, we can
define a wavelet packet basis BT , each leaf of the tree corresponding to one subband. Each
element of this basis has frequency support that lies approximately in the element of the
partition T corresponding to its subband. The basis elements are thus approximate eigen-
functions of the operators defined by the functions in FT . Those basis elements whose
support lies in R thereby satisfy condition 1 to a certain approximation.

How we address condition 2 is ultimately determined by the shape of the region R.
If it is dyadic in shape, then our task of completing the set of wavelets inside the region,
and in doing so forming a basis for it, is relatively straightforward. This is the chosen
approach for training our texture models and is discussed further in section 3. For the
case of arbitrarily shaped regions however, condition 2 is considerably harder to satisfy.
It more or less forces the use of iterative optimization algorithms to perform the segmenta-
tion because, at each stage, we need a hypothesis for the class map k in order to know the
regions and compute a basis. In this paper, we use a much simpler (but heuristic) point-
wise classification method that does not require us to consider condition 2 for arbitrarily
shaped regions.

3 Parameter Estimation
Since we are performing supervised segmentation, we will learn the parameters of the
texture models corresponding to various semantic entities in the scene (e.g. ‘forest’, ‘wa-
ter’, ‘crops’) in advance from training data. We thus collect a number of sample image
patches for each entity considered. We have the freedom to choose the shape and size of
these patches and so we select dyadic patches that are large enough to capture any period-
icities in the texture. The advantage of dyadic patches is that condition 2 is approximately
satisfied, at least for this training stage.

The unknown parameters of a texture model are: the wavelet packet basis to be used,
or equivalently the dyadic partition, T ; and the values of the means να and inverse vari-
ances, fα , α ∈ T labelling the subbands. Note however that the constancy of the mean ν ,
and in consequence the region mean νR, means that the wavelet packet coefficients of νR
are all zero except for the scaling coefficient subband, which we assign α = 0. We will
thus use να to denote the mean of subband α , with the understanding that it is zero unless
α = 0. From now on, f and ν will denote the maps from subbands to parameter values
f (α) = fα and ν(α) = να .

Following the argument in section 2.1, the measure for each dyadic training patch then
takes the form:

Pr(IR|ν , f ,T ) = ∏
α

[

(

fα
π

)Nα /2

e− fα ∑i∈α(wα,i−να)
2
]

(6)

where i is an index for the individual wavelets within each subband α (strictly speak-
ing, this must vary with α , a change we choose not to notate); wα,i is the 〈α, i〉 wavelet
coefficient of the dyadic image; and Nα is the number of coefficients in subband α .



3.1 Adapting The Wavelet Decomposition
To find the optimal parameters for a given texture we examine the probability

Pr( f ,T |d) ∝ Pr(d| f ,T )Pr( f |T )Pr(T ) (7)

where d is the training data samples used for a given texture. We assume Pr( f |T ) to be
uniform, and choose the prior, Pr(T ), to penalize large decompositions:

Pr(T ) = Z−1(β )e−β |T | (8)

where |T | is the number of elements in the partition. The probability Pr(d| f ,T ) is given by
equation (6). Differentiating with respect to fα and να gives us the maximum a posteriori
(MAP) estimates of these quantities for fixed T :

f̂α =
Nα

2∑i∈α

(

wα,i −να

)2 ν̂α = 2
Nα

∑i∈α wα,i (9)

Note how the independence of the subbands is critical here: without independence the
MAP estimates would be harder to compute. The independence of the subbands further
implies that we can use a depth-first search through the space T to find the exact MAP
estimate for T .

Figure 2 contains some optimal decompositions. The images show the logarithm of
f , in order to make clear the decomposition. Most of the f values are zero when scaled
and quantized to eight bits. Also shown for comparison are the magnitudes of the Fourier
coefficients.

3.2 Interpretation
The above models could equally well be expressed in terms of a standard wavelet basis,
and considering what this means throws light on what the models achieve. Although the
inverse covariance operator of a model is (approximately) diagonal in the adapted wavelet
packet basis chosen by the above procedure, it will not in general be diagonal in the stan-
dard wavelet basis. Mathematically, this is clear. Intuitively, the reason is the following.
Many textures possess periodic correlations between pixels at intermediate frequencies
that extend over many wavelengths ([6]). The standard wavelet basis, however, links
the notions of scale and frequency, so that the range of correlations is of the order of
the inverse of the frequency of the wavelet (i.e. one wavelength). Correlations between
pixels over a range corresponding to many wavelengths can thus only be captured in a
standard wavelet basis by introducing interactions between coefficients. This is typically
achieved through the use of tree models, in which coefficients interact via their parents,
grand-parents, and so on.

In contrast, the adaptive bases presented here capture these long-range correlations us-
ing wavelet packet bases that can represent correlations between pixels over many wave-
lengths while remaining independent, with no need for interactions between the coef-
ficients themselves. For Gaussian models, this type of description is always possible,
since the inverse covariance can always be diagonalised, at least in principle. The prob-
lem is that the basis elements may not have compact spatial support, which renders them
unsuitable for segmentation. The above procedure can thus be thought of as finding the
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Figure 2: Row 1: Original textures: a) – d). Row 2: The corresponding Fourier magnitude
images: e) – h). Row 3: The log display of their optimal decompositions: i) – l).

basis that diagonalises an inverse covariance that must simultaneously be learnt, subject to
probabilistic restrictions on its form that ensure the more or less compact spatial support
of the basis elements.

4 Classification
Having estimated our texture parameters, we move on to the problem of classifying im-
ages of scenes that contain multiple entities. Unlike the training stage of our procedure
where we were at liberty to choose convenient dyadic training patches, the image regions
corresponding to a given entity are arbitrarily shaped. Our dyadic wavelet packets of
section 3 no longer form a basis for the region to be analysed. The full solution of this
problem implies we must deal with condition 2, which we do not yet know how to satisfy.
Instead, in this paper, we use a simple and heuristic classification method. This method
has one major advantage: it is faster than the iterative optimization algorithms that would
be necessary if condition 2 were to be satisfied.

First note that each texture model has a largest effective filter size, corresponding to
the smallest elements in the Fourier domain partition. This filter size is dyadic. Given
a set of texture models then, there is a largest effective filter size among them all. To
classify pixel x in the image domain, we examine an image patch centred on x of size



equal to this largest filter size among all models. We can calculate the probability of the
image restricted to this dyadic patch for each trained texture model using equation (6).
Assuming that the prior on the class map k is uniform on L, these data probabilities can
be normalized to give the posterior probabilities for the class of the patch. The MAP
estimate of the class of the patch is then given, tautologically, by the class with maximum
posterior probability. Rather than assign this class to every pixel in the patch however, we
heuristically assign this class only to the pixel x at the centre of the patch. We then repeat
this procedure for every pixel in the image.

The danger of such a pointwise procedure is that the class map k can be very irregular.
One way to attack this problem is to use a non-trivial prior on k in conjunction with an
optimization algorithm. Having avoided these algorithms in conjunction with condition 2
however, we choose not to introduce them now. Instead we use another heuristic proce-
dure that has a similar effect to a regularizing prior: it smooths the class map and shortens
boundaries. This is done by combining the posterior probability distributions on L at each
pixel, πx, in the following way:

k̂(x) = argmax
l∈L

∏
x′∈V (x)

πx′(l) (10)

where V (x) is a set of neighbours of pixel x, which includes x itself. Examples of neigh-
bourhoods can be seen in figure 3. This rule has a similar effect to a regularizing prior

a) b)

Figure 3: a) Neighbourhood-5 and b) Neighbourhood-7 schemes for pixel x

(e.g. the Potts prior), but it still allows a pixelwise classification because it uses the data
at the neighbours of a pixel but not their unknown classes. In consequence, one can use
larger neighbourhoods with little extra penalty.

5 Results
The method described above has been tested on a number of real aerial and satellite optical
and SAR images. Examples of the results obtained are shown in Figure 4. Kappa values
for these segmentation results are given in table 1. These values are based on the manually
created ground truth images presented in the second row of figure 4. The classes used to
generate each ground truth image are shown in table 2.

A more insightful look into the nature of the segmentations can be gained from ex-
amining the entropy S(πx) of the distributions πx. In figure 5, the first row shows the
entropy which lies in the interval [0, |L| ], rescaled to [0, 255 ]. The second row of this
figure shows an entropy-weighted misclassification map. In these images, the value of a
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Figure 4: Original images: a) Aerial, 1m resolution c©IGN, b) IKONOS satellite, 1m res-
olution c©Space Imaging, c) SAR, d) IKONOS satellite, 1m resolution c©Space Imaging;
Manually created ground truth images: e) – h); Neighbourhood-1 classifications: i) – l);
Neighbourhood-7 classifications: m) – p).

Figure 4(a) Figure 4(b) Figure 4(c) Figure 4(d)
Neighbourhood-1 0.81 0.70 0.74 0.78
Neighbourhood-7 0.81 0.68 0.75 0.78

Table 1: Kappa values for the segmentation results presented in figure 4.



Classes (in order of increasing grey level)
Figure 4(a) unploughed field, scrubby field, ploughed field, field border
Figure 4(b) flood, trees
Figure 4(c) mountains, plain
Figure 4(d) scrub, ploughed field, woodland, unploughed field, field border

Table 2: Classes defined for the ground truth images in figure 4.

a) b) c) d)

e) f) g) h)

Figure 5: Entropy images for the neighbourhood-1 classifications of figure 4: q) – t);
Corresponding entropy-weighted misclassification maps: u) – x).

pixel is given by e−S(πx)[2δ (k(x),k∗(x))− 1] where k is the algorithm output, and k∗ is
the manually created ground truth. (Note that eS is analogous to the number of classes
that were confused by the algorithm.) Thus values greater than 128 represent ‘correct’,
with certainty increasing with increasing intensity, while values less than 128 represent
‘incorrect’, with certainty increasing with decreasing intensity. These images show that
the method is uncertain about its segmentation primarily at the boundaries between entity
regions, as would be expected. In the interior of entity regions, the entropy is generally
extremely low.

6 Conclusions
Texture is an important attribute of the appearance of many semantic entities of interest
in remote sensing images. In this paper, we have described a new adaptive probabilis-
tic model for texture description and applied it to the supervised segmentation of such
images. Wavelet packet bases, which arise naturally within our probabilistic framework,
allow the model to adapt to an individual texture class, and in doing so to capture its
structure, and in particular the long-range correlations that create its principal periodici-
ties. The method works well on a variety of textures, despite its simplicity. Two outstand-



ing issues to be resolved are the estimation of the parameter β in the prior on the set of
trees, and the choice of a neighbourhood size. In addition, there are two sets of issues
that point to future work. First, in some cases the models are too simple, and second, the
segmentation method is too rough. We discuss these points in turn.

The presence of a narrow band of frequencies that runs throughout a texture means
that the statistics of the wavelet packet coefficients with support in that band are no longer
clustered around zero (although they have mean zero), in contrast to the statistics reported
for standard wavelet coefficients [10]. Gaussian models for such coefficients are thus not
accurate for modelling the statistics of adaptive bases.

The models described in this paper are not rotation invariant, although in principle
this is just as much of a requirement as translation invariance. One can impose rotation
invariance on a Gaussian distribution, but the results are not that interesting since the
inverse covariance must now be a function only of the magnitude of the frequency. Non-
trivial rotation invariance can be achieved by mixtures over rotations or by otherwise
increasing the complexity of the model.

Finally, translation-invariant Gaussian models have no way of taking into account the
relative phase of Fourier components, and yet phase is critical for texture structure.

All three of these modelling issues will be treated in future work by extending the
Gaussian model through the addition of quartic terms to the exponent.

The segmentation method used above also possesses a drawback. For small neigh-
bourhoods the results are noisy, while for larger neighbourhoods the smoothing effect
distorts the shape and size of entity regions. Future work will focus on the satisfaction
of condition 2, and the use of iterative optimization algorithms with regularizing priors to
improve the accuracy of the segmentations.
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