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Abstract

Artists pictures rarely have photo-realistic detail. Tools to create pictures
from digital photographs might, therefore, include methods for removing
detail. These tools such as Gaussian and anisotropic diffusion filters and
connected-set morphological filters (sieves) remove detail whilst maintain-
ing scale-space causality, in other words new detail is not created using these
operators. Non-photorealistic rendering is, therefore, a potentia application
of these vision techniques. It isshown that certain scal e-space filters preserve
the appropriate edges of retained segments of interest. The resulting images
have fewer extrema and are perceptually simpler than the original. A second
artistic goal is to accentuate the centre of attention by reducing detail away
from the centre. The process also removes the detail providing perceptual
cues about photographic texture. This alows the ‘eye’ to readily accept a-
ternative, artistic, textures introduced to further create an artistic impression.
Moreover, the edges bounding segments accurately represent shapes in the
origina image and so provide a starting point for sketches.

1 Introduction

A photographer tends to choose uncluttered backgrounds and make careful use of focusto
direct attention. Of course, lens blurring is both easy and effective for it exploits the natu-
ral and powerful way in which the brain rejects non-foveated regions of a scene (they are
simply out-of-focus). The technique finds its way into rendering, digital art, advertising,
and video through the Gaussian blur filter widely used to de-focus background material.
But the method israrely used by painters. Rather, they direct attention by selecting detail
and manipulating textures and geometry.

By contrast, apainter startswith ablank canvas, adds paint and the more skilled knows
when to stop. It isthe progressive addition of detail that characterizes the process of pro-
ducing representational art in which only some detail directly represents that in the orig-
inal scene. It difficult to capture representational detail manually from three-dimensional
(3D) scenes onto two-dimensional (2D) canvases, but this does not satisfactorily explain
why trained artists limit the amount of detail they use. After al two dimensional, pho-
tographic quality, images have been traced for over five centuries by those projecting
images onto surfaces using concave mirrors and lens [10]). But the evidence from the
resulting pictures suggests that artists pick only those details that resonate with their artis-
tic interpretation. They choose to ignore some objects and lots of detail. Painting is not
photography.
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Figure 1: (A) Hockney [10] draws attention to how, in this Ingres drawing, “the cuff of the
left sleeve is not followed ‘round the form’ as you would expect, but carries on into the
folds’. (B) Red overlay indicates the relevant lines. (C) Photograph of a similar subject.
Neither Canny (D) nor Sobel (E) edge filtering reveal the artistic line. (F) Shows in red
the line line from (E) that follows the cuff rather than the light. Blurring reveals the large
scale cuff-to-sleeve highlight (G) however it yields edges (H) with agraphical rather than
the sketch-like appearance created by Ingres.

Selectively removing detail simplifies a photograph and is implicit in existing meth-
ods for producing painterly pictures. Systems for creating pen-and-ink drawings from
existing images clearly remove both color and spatial detail and simultaneously add artis-
tic detail in the form of pen strokes [20]. In the case of painting Haeberli samples the
image, effecting a simplification. He then modulates and spreads the color over a larger
region using a brush, an action that also adds technique detail by simulating the medium
and stochastic brush strokes that are modulated by edge gradients to imply artistic inter-
pretation [8]. By modelling the flow of water dragging pigments over paper Curtis [5]
removes detail from the original photograph by aform of blur and simultaneously substi-
tutes texture detail that replicates watercolor. Hertzmann starts by removing detail with
large brushes and then uses finer brushes to selectively refine the picture where the sketch
differs from blurred photograph, a form of multiscale removal of detail [9]. These meth-
ods sub-sample the source image either before or after smoothing: the standard way to
remove detail and prevent aliasing. In this paper, however, we concentrate on another way
to control the level of detail in adigital image. Scale-space filtering to both remove detail
and uncover large scale image maxima (highlight) and minima (lowlights).

Chiarascuro (bright highlights and dark shadows) and its manipulation characterizes
the work of many artist’s, since the renaissance. Hockney [10] draws attention to the
way the line used by Ingres follows the light rather than the form (as evidence of optical
assistance of which he gives many other examples). Figure 1(A) shows an extract from
the original drawing of Madame Godinot 1829. (B) Showsthe artist’slines that, Hockney
argues, follows the light. We illustrate the problem by analysing the photograph shown
in (C). Conventional edge detectors (D and E) produce a prominent line along the back
edge of the cuff (F): a boundary that was ignored by the artist. The problem lies with
the local edge filter. Typically they have a small region-of-support that responds to the
strong edges around the form and so cannot ‘ see’ the larger picture (the Canny filter (D) is
more complex but has related problems). Simplifying theimage by blurring, Figure 1(G),



Figure 2: (A) Photograph and (B) associated edges. (C) Sieved to remove detail and (D)
fewer edges make a more sketch-like picture.

increases the region-of-support and does both revea the expected large scale highlight
running from the cuff into the sleeve but it removes detail.

Thus Gaussian scale-space filters meet two requirements of a pre-processor for non-
photorealistic rendering. As such it is used to segment images and create pictures where
the artist’s eye-gaze governs the level of detail rendered at different positions in the im-
age [6]. Whilst pleasing, the results are limited in the range of styles they can support
because such filters introduce significant geometric distortion reflected in the edges (H)
that, whilst graphically interesting, do not form the basis of a sketch: important to the
artist. Here we pursue alternative scale-space filters.

1.1 Simplification maintaining scale-space causality

In image processing the process of removing detail from a digital image emerged from
studies on finding salient, edges [17]. The work with Gaussian filters lead to the, theo-
retically tidy, representation of images known as scale-space [11, 27, 14]. Thisimportant
concept is seen as a requirement of image simplification systems since it guarantees that
extremain the simplified image are not artifacts of the simplification processitself. Com-
putation systems that preserve scale-space causality are usually associated with Gaussian
filters [1] and diffusion [18] in which the image forms the initial conditions for a dis-
cretization of the continuous diffusion equation: V- (cVf) = fs. If the diffusivity is a
congtant this becomes the linear diffusion equation, V2f = f; which may beimplemented
by convolving the image with the Green’s function of diffusion equation: a Gaussian con-
volution filter. Of course, care is heeded when this equation is discretized [15] but, if itis
done correctly, a scale-space with discrete space and continuous scale may be formed?.

10r with a discrete scale parameter if preferred.



Approximations to this Gaussian blur filter are common in image-editors and graph-
ical rendering systems. The problem with blurring, when finding salient edges at large
scales, isthat edges wander away from the true edge and objects become rounded: a con-
seguence of convolution, Figure 1H. It is better if diffusivity depends upon contrast, as
in anisotropic diffusion, but computation then becomes lengthy and unwanted small scale
detail with ahigh enough contrast may neverthel ess be preserved. In other words, as with
linear diffusion, there is an interaction between the intensity and scale of an object.

More recently the multiscal e analysis of images has been explored in thefield of math-
ematical morphology. Two rather different approaches to constructing a morphological
scale-space have been suggested. In thefirst [22, 13] the imageis either eroded or dilated
using an elliptic paraboloid. Asis often the case in morphology (and convolution filters)
the shape of the structuring element (window) dominates over structurein theimage. That
said however, the brush like ‘texture’ introduced by the structuring element can be useful
indigital art and is used in photo-editor plug-ins (Adobe Photoshop Gallery Effects).

The second approach uses those connected-set alternating sequential filters sometimes
termed sieves[3]. Sieves[4] appear in avariety of guises but they have their starting point
in connected-set graph morphology [19, 24, 25] and watersheds [21]. At small scale they
filter out maximally stable extremal points[12] or detail and at larger scale, entire objects.
Figure 2(C) confirms that fine detail is removed and that edges (D) of remaining features
arewell preserved. These edges are more sketch-like than those derived directly from the
image (B) or from a Gaussian smoothed image Figure 1(H). This, and the more poster-
like simplified image provides a reason to explore further how these scale-space filters
can be used in non-photorealistic rendering.

2 Methods

We implement the sieve described in [3]. The algorithm first creates alist of all maxima
and minima. These extrema are level 8- (or 4-) connected-sets of pixels that are then
sorted by area. A scale decomposition progresses by merging all extrema of area 1 to
the next most extreme neighbouring pixel(s), i.e. al extreme values are replaced by the
value of the next most extreme adjacent pixel. If the segment remains an extremum it is
added to the appropriate scale extremum list. The decomposition continues by merging
all extremaof scale 2, 3 and so on. Thus, for example, by scale 100 there are no maxima
(white) or minima (black) areas of less than 100 pixels. We use low-pass, band-pass and
high-pass filters created by combinations of sieving operations.

The image is represented as a graph [23] G = (V,E). The set of edges E describes
the adjacency of the pixels (which are the vertices V). A pixdl, X, is connected to its
eight neighbours. A region, C;(G,Xx), is defined over the graph that encloses the pixel
(vertex) x, Cr(G,x) = {&€ € C/(G)|x € £} where C,(G) is the set of connected subsets
of G with r elements. Thus C;(G,X) is the set of connected subsets of r elements that
contain x. For each integer r > 1 the operators y, ¥, 4", A" :ZV — ZV are defined
as yr f(x) = maXzcc, (6.x) MiNueg F(U),, % F(X) = Mingec, (6.0 MaXyee F(U), A" = Ryr,
N =y y. #" isaconnected-set grayscale opening followed by aclosing defined over
aregion of sizer.

The types of sieve known as M- or N-sieve are formed by repeated operation of the
A or & operators that are also known as connected alternating sequential filters. An
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Figure 3: (A, C, E) Sieve red, green blue channels to scales 10, 100, 5000 respectively.
The channels have extrema that do not necessarily overlap, this creates irregular areas
particularly at large scales. (B, D, F) Convex hull colour sieve to scales 10, 100, 5000
respectively. At large scales this produces a clearer result.

M-sieve of f isthe sequence ((")):_, given by
f(l) _ %11:’ f(l’+l) — ///r+lf(r)7 r>1 (1)

The N-sieve is defined similarly. It has been shown how connected set openings can
be performed in approximately linear time [26] using a modification to Tarjan’s digjoint
set algorithm and a similar implementation is used here for the aternating sequence of
openings and closings that forms the sieve [2, 3] 2.

(") is alow-pass filter removing al extrema up to scaler. () — (") is a high-pass
filter keeping all extremafrom scale 1 tor and (&) — £(") isaband-pass filter for extrema
(granules) of scales betweens andr.

The sieve requires two orderings. Level connected-sets are ordered by value and ex-
tremaare removed in order of scale. Where a pixel represents atriple, red, blue and green
(RGB), thereis no clear way of jointly ordering by value. Thisis addressed in two ways.
We note that all three channels have a high correlation with brightness (unlike hue, sat-
uration, value) and so the three colour planes are sieved independently, the RGB-sieve.
The effect of removing detail can be seen by comparing Figure 2(A) and (C). It isevident
that (B) has less detail yet, in contrast to aternative scale-spaces, the edges of large scale
objects are preserved. Thisis, perhaps, more obvious in the edge images compare Fig-

2Note to reviewers: Aspects of the procedure are covered by patents
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Figure 4: ‘(A) Photograph. (B) Top, the central cross designating the region of primary in-
terest together with its border. Bottom, white segment indicates the region automatically
selected to be foreground resolution, gray segment at middleground resolution, black at
background resolution. (C) The union of foreground, middleground and background reso-
lution image segments. Controlling the level of detail helps direct attention to the interest
pointsin the centre.

ure 2B and D. Theresulting image is both grayer than the original (extrema are removed)
and the colours change slightly because they arise from the signals obtained from colour
channels sieved independently. Thereis no link between a pixel and its colour.

A new dternative is the convex ‘colour sieve’ which follows from a geometric inter-
pretation of the colours of aregion and its neighbours. A convex hull is fitted to points
in the region projected into colour space. All points that lie on the convex hull itself are
extreme [7] and those enclosed are not extreme. This provides an ordering - the distance
from the convex hull. This definition is tidy because many typical colour transforma-
tions such as gamma correction and linear transformations affect the geometry but not the
topology of the convex hull and the extrema inherit the invariance properties.

To simplify the image we merge smaller regions into larger ones without introduc-
ing additional extrema by merging to the neighbour with the closest Euclidean distance.
Neighbouring regions with identical colour distances are further ordered by computing
the difference of their luminance L = (r +g+b)/3 and further tiebreaks are achieved by
ordering by their G,R and B values. The merging isrepeated iteratively until idempotence.

3 Reaults

Figure 3 compares the two sieve implementations and shows that the low-pass colour-
sieve produces colours that are | ess washed-out than the low-pass RGB-sieve, particularly
at large scales where the colour-sieve produces a ‘poster’ effect more effectively than
guantisation (commonly used in paint packages). The colours are also more faithful to
the original asthey have been selected not computed. However, the high order-complexity
of the current colour-sieve means that the RGB-sieve is used in the remaining Figures.
We now consider how high- and low- lights extracted from the image using a high-
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Figure 5: ‘(A) Band-pass highlights displayed against a black backround. (B) Band-pass
lowlights displayed against a white backround. (C) Band-pass HSV saturation channel
used to select colours, such asthered roofs, that stand out from backround. (D) Highlights
and lowlights incorporated into a picture. (E) Replacing the chroma of (D) with colours
from (C) adds colour highlights (visible in colour prints, pdf only) that are not visible in
the luminance image (F).

pass sieve can be incorporated into non-photorealistic image renderings. The grayscale
image is band-pass sieved, q = (&) — ("), to find the associated scale highlights, where
q>0,y=gq, elsey =0. Figure 5A shows the result. Likewise, lowlights where q < O,
y=1+q, elsey =1, Figure 5B. Combined by painting them onto amid-tone background,
Figure 5D, the effect is similar to chalk and charcoal. Colour highlights are located at a
particular range of scales by sieving the HSV saturation channel and using this to control

the chroma, Qhue = féz - ffgl:l where gpye > t, hue = gsat, sat = Qsat, val = 1, elsehue = 1,
sat = 1, val = 1, where t is a threshold that can be adjusted by the user®. The colour
highlights have been painted by replacing the NTSC chroma values on the canvas with
those from the colour highlights, Figure 5E*

Interestingly, as Livingstone [16] points out, by colouring the canvas with the com-
plement (the two colours sum to gray) of, for example, the red roofs an optical illusionis
created. The effect isto make the colour appear more interesting that it otherwise might
be for two reasons. Firstly, it challenges the viewer’s vision system (and monochrome
display devices) because the NTSC grayscale (perceptual luminance) does not change
even when the chrominance does. al trace of the colour change vanishes in an NTSC

3For digital artists the convention, that user-adjustable thresholds should be avoided, is not relevant.
4PDF version of the paper.



Figure 6: ‘(A) Figure 4 textured using a photograph of a watercolour wash and pencil
cross-hatching (B).

grayscale print, Figure 5F. Exactly how Figure 5E appears on the printed page depends
on the printer software. For readers able to see colour thisin colour, Figure 5E playsto an-
other colour illusion. The sharp boundary between the complementary colours enhances
perceived brightness [16].

The brushwork in Figure 5A-F placesthe centre of attention in the centre of the picture
by leaving the periphery free of detail. Thisis typical of many paintings. We, therefore,
devise an algorithm that automatically selects a central region to be rendered in more
detail than a middleground which, in turn is set against a backround with low detail. In
other words, an algorithm that creates foreground, M¢, and middleground, My, masks.

The process is outlined in Figure 4B. The idea is to create masks that exactly follow
the boundaries of objects in the image and which place M; in the centre and M, around
it. Each mask is created separately. The image is sieved to a scale, s, quantised by an
amount g and the flat zones labelled. Those zones that intersect the innermost darker-
cross and the pale-cross are then marked as shown by the white segments, Figure 4B. It
white segment has an area A. The part of the pale-cross not covered by the marked zones
has an area A. We then search for ascale, s, and quantisation ¢ that minimises difference
between the areas, A — A. An exhaustive search of only afew s and g suffices. Typical
masks for M¢ and M, are shown in Figure 4B bottom panel and they have been used to
combine images created by RGB-sieving to three scales, Figure 4C. The result is more
detail towards the centre of the image helps draw the viewers attention. The changes of
scale are subtle since they follow the boundaries of objectsin the image rather than some
externally imposed mask.

Notice that many of the areas in Figure 4C are flat because texture, fine detail, has
been removed by the sieve. This creates an opportunity to replace the original texture
with another as an artist might do by using paint or pencil. The image was mixed with
a photograph of a simple watercolour wash (not shown) (multiplication rather than addi-
tion), Figure 6A, produces a distinctly watercolour like result. Mixing the same texture
with the original is much less effective (easily achieved in Photoshop) because the un-



derlying original detail leaves old texture cues intact. A more extreme example is shown
in Figure 6B. Here, a photograph of an area of pencil cross-hatching is mixed with Fig-
ure 4C. Unlike Figure 6A however, each labelled level set in Figure 4C is filled with a
segment of the cross-hatched picked from a random position in the texture image. In
other words each of the objects is hatched separately. This is most clearly seen in the
large flat areas top left and bottom right. Superimposing the edges compl etes the effect.

4 Conclusion

The sieve, particulary the convex-hull colour, algorithm is a useful starting point for non-
photorealist rendering of photographs. It providesthe digital artist with accessto achoice
of images with differently scaled detail. Unlike blurring, the system simplifies without
distorting edges thus the edges provide a useful starting point for creating sketches. The
large scalelevel setsit creates provide amechanism for segmenting the image into regions
that, by having different amounts of detail, create a centre of attention. It is data-driven
rather than dependent on a pre-defined geometry. Band-pass sieves also allow artistically
important high-, low- and bright coloured highlights to be found. Thus in Figure 7A
the sieve removes small scale detail and the highlights are now treated in a way that is
redolent of Figure 1A with edges that follow the light Figure 7B. We do not attempt to
map photographs directly into art: the artist is still essential. Rather the aim isto provide
the digital artist with tools. Further automatation might include object recognition to
create ways of improving composition and tools to balance colour composition.
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Figure 7: (A) Sobel edges after sieving RGB Figure 1C to scale 2000: theline carriesinto
thefolds. (B) Red line indicates the line.
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