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jorahl@foi.se

Abstract

In this paper, we consider the potentialities of adapting a 3D deformable
face model to video sequences. Two adaptation methods are proposed. The
first method computes the adaptation using a locally exhaustive and directed
search in the parameter space. The second method decouples the estimation
of head and facial feature motion. It computes the 3D head pose by combin-
ing: (i) a robust feature-based pose estimator, and (ii) a global featureless cri-
terion. The facial animation parameters are then estimated with a combined
exhaustive and directed search. Tracking experiments and performance eval-
uation demonstrate the feasibility and usefulness of the developed methods.
These experiments also show that the proposed methods can outperform the
adaptation based on a directed continuous search.

Keywords: 3D deformable models, face model adaptation, face tracking, active appear-
ance models, analysis-by-synthesis approaches, human-computer interaction, learning

1 Introduction

Face and facial feature tracking in a video sequence has been recognized as an essential
prerequisite for robust facial expression/emotion analysis, face recognition, and model-
based image coding. This information is also a very important primitive for smart envi-
ronments and perceptual user interfaces where the poses and movements of body parts
need to be determined. With the wide availability of inexpensive cameras and increasing-
ly better support of streaming video by computers, vision-based head and facial motion
tracking techniques are well justified. The issue of face recognition and facial analy-
sis has been extensively addressed in recent years [11]. Different approaches including
eigenfaces [10], elastic graph models [7], deformable templates [12], Active Shape Mod-
els (ASMs) [4] and Active Appearance Models (AAMs) [3] have shown to be promising
under different assumptions.

A huge research effort has been devoted to detecting and tracking of head and facial
features in 2D and 3D (e.g., [9, 12]). Most tracking approaches take advantage of the
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constrained scenario: the face and/or the head are not viewed as arbitrary tracked objects.
A model-based approach is favored.

In [2] , we have formulated the problem of real-time face and facial feature track-
ing/adaptation using an Active Appearance Model search. The search algorithm employs
a directed continuous optimization technique, and it belongs to the class of analysis-by-
synthesis approaches. Applying an AAM search requires the prior knowledge of two
key elements: (i) a statistical facial texture model (e.g., using a Principal Component
Analysis method), and (ii) a gradient matrix which encodes the differential relationship
between the parameter space and the texture differences. To recover these elements, the
3D model should be adapted to a set of facial images (training set) either manually or
semi-automatically. However, the sheer number of training images provided by video
sequences makes the manual and semi-automatic adaptations very tedious. Moreover,
the automatic adaptation based on a directed continuous optimization (AAM search) may
suffer from some inaccuracies possibly caused by bad convergence behaviours.

In this paper, we propose two novel adaptation methods that can be used for face track-
ing and AAM training. These methods do not employ any directed continuous search (on-
ly a rough facial texture model is required), and are able to tackle the above disadvantages.
The first method computes the adaptation by adopting a locally exhaustive and directed
search in the parameter space. The second method decouples the estimation of head and
facial feature motion. It computes the 3D head pose and facial motion in sequence. The
3D head pose is estimated by combining: (i) a robust feature-based pose estimator, (ii)
a global featureless criterion. The facial animation parameters are then estimated with a
combined exhaustive and directed search. The remaining of the paper is organized as fol-
lows. Section 2 introduces the deformable face model. Section 3 describes the real-time
directed continuous search. Section 4 describes the two proposed adaptation methods.
Section 5 presents some experimental results as well as a performance study.

2 A deformable face model

2.1 A parameterized 3D face model

Figure 1: Candide-3 with 113 vertices and 183 triangles.

Building a generic 3D face model is a challenging task. Indeed, such a model should
account for the differences between different specific human faces as well as between
different facial expressions. This modelling was explored in the computer graphics, com-
puter vision, and model-based image coding communities. Many different face models



exist, varying significantly in complexity. In our study, we use the 3D face model Can-
dide, developed at Linköping University in the eighties [1]. This 3D wireframe model
is a relatively simple model, see Figure 1, consisting of approximately 113 vertices and
183 triangles, and even though more complex models are preferred by face animators and
computer graphics people, Candide will suit our needs here.

Thus, the shape up to a global scale can be fully described by the 3n-vector g–the
concatenation of the 3D coordinates of all vertices Pi. The vector g can be written as:

g = g+Sσ +A α (1)

where g is the standard shape of the model, and the columns of Sand A are the Shape and
Animation Units, respectively. The Shape Units provide a way to deform the 3D mesh
such as to make the head wider, the eyes wider, etc. The Action Units provide a way to
deform the 3D mesh according to some predefined facial animations [5]. Thus, the term
Sσ accounts for shape variability (inter-person variability) while the term A α accounts
for the facial animation (intra-person variability).

The adopted projection model is the weak perspective projection model. Therefore,
the mapping between the 3D face model and the image is given by a 2×4 matrix M . Thus
a 3D vertex Pi = (Xi,Yi,Zi)

T ⊂ g will be projected onto the image point pi = (ui,vi)
T

given by:
(ui,vi)

T = M (Xi,Yi,Zi,1)T (2)

The matrix M encapsulates the camera intrinsic parameters and the 3D head pose repre-
sented by a rotation matrix R and a translation vector t = (tx, ty, tz)T . Retrieving the 3D
pose parameters (R and t) from M is straightforward. We represent the rotation matrix R
by the three Euler angles. Therefore, the geometry of the model is parameterized by the
parameter vector b:

b = [θx, θy, θz, λ tx, λ ty, λ tz, σT α T ]T

For a given person, only the 3D head pose and the animation parameters, α , are time
dependent.

2.2 Geometrically normalized facial images

A face texture is represented as a geometrically normalized image. The geometry of this
image is obtained by projecting the standard shape g (wireframe) using a standard 3D pose
(frontal view) onto an image with a given resolution (intrinsic parameters). This geometry
is represented by a triangular 2D mesh. The texture of this geometrically normalized
image is obtained by texture mapping from the triangular 2D mesh in the input image
using piece-wise affine transform. For a very fast texture mapping (image warping), we
have exploited the fact that the 2D geometry of the destination mesh can be known in
advance. In fact, the geometrical normalization normalizes three different things: the
global motion, the local motion, and the geometrical differences between individuals.
Figure 2 displays the geometrical normalization results associated with two input images
(256×256) having a correct adaptation. The geometrically normalized images are of
resolution 40×42. Computing the geometrically normalized image of resolution 40×42
takes about 0.3 ms on a 1500 MHz PC.



Figure 2: Two input images with correct adaptation (top). The corresponding geometrically nor-
malized image (bottom).

2.3 Texture consistency

The texture x of any geometrically normalized image is given by (using Principal Com-
ponent Analysis method):

x ≈ x+X ξ (3)

where x is the mean texture, the orthogonal columns of X are the texture modes (eigen-
faces) and ξ is the vector of texture parameters.

Assume that we have a face image I whose model parameters are given by the vector b.
Using these parameters, the geometrically normalized image can be easily reconstructed.
Let x be the resulting texture. This texture can be approximated by the texture modes
according to:

ξ = XT (x−x)
x̂ = x+XXT (x−x)

where x̂ is the best approximate of x in the space represented by the texture modes.
If the model geometry, b, is a good fit to the image I, then the residual error between

the texture x and its approximated texture x̂ is small since the remapped texture will be
consistent with the statistical model of a face texture.

Thus, a reliable measure of the goodness of any fit, b, can be given by the norm of the
associated residual image between the remapped texture and its PCA approximation:

e(b) = ‖r‖2 = ‖x(b)− x̂(b)‖2 (4)

3 The adaptation problem

Given an image of a face (or a video sequence), the adaptation consists of estimating
the model parameters b for each image. For a given person, σ is constant and can be
estimated using the method described in [8]. In this case, b can be simplified to:

b = [θx, θy, θz, λ tx, λ ty, λ tz, α T ]T



Thus for a given sequence, the vector b describes the time dependent geometry of the
3D wireframe model (3D head pose and facial animation). In a tracking context, the
adaptation results associated with the current frame will be handed over to the next frame.

Without loss of generality, we have chosen the following Action Units [5]: 1) Jaw
drop, 2) Lip stretcher, 3) Lip corner depressor, 4) Upper lip raiser, 5) Eyebrow lowerer,
6) Outer eyebrow raiser (i.e. the dimension of the vector α is 6). These Action Units are
enough to cover most common facial expressions (mouth and eyebrow movements).

4 Adaptation with a directed continuous search

According to the Active Appearance Model search paradigm, the model parameters are
estimated such that the texture of the corresponding geometrically normalized image is as
close as possible to the face space [2]. In other words, the model geometry, b, is estimated
by locally minimizing the residual error (Eq. (4)). The active appearance model search
employs a simple gradient descent method in the following manner. For a starting value
of b, supposed to be close to optimum, we compute r(b) and e(b), and find an update
vector ∆b by multiplying the residual image with an update matrix:

∆b = −G† r = −(GT G)−1 GT r (5)

where G = ∂r
∂b is the gradient matrix associated with the residual error r , and G† is the

pseudo-inverse of the gradient matrix. The vector ∆b gives a displacement in the param-
eter space allowing to decrease the error. We compute a new parameter vector and a new
error:

b′ = b+ µ ∆b (6)

e′ = e(b′)

If e′ < e, we update b according to Eq. (6) and the process is iterated until convergence.
If e′ ≥ e, we try small update steps having the same direction. Convergence is declared
when the error cannot be improved anymore. The gradient matrix G = ∂r

∂b is considered
approximately fixed, i.e. r(b) is supposed to be a linear function of the parameter vector
b. It is estimated once from the training set where the model was correctly adapted to
each example. It is created by numeric differentiation, systematically displacing each
parameter and computing an average over the training set.

5 Combined locally exhaustive and directed search

It is clear that the directed continuous search has the advantage that the adaptation can run
in real-time. On the other hand, it has several disadvantages. First, the gradient matrix
should be computed/approximated in advance. Second, the head motion between two
successive frames should be relatively very small. Third, there is a risk that the directed
search may end at non-desired local minima, which may lead to non-accurate adaptation
especially for the out-of-plane motions.

To overcome the disadvantages of the directed continuous search, we propose two
different methods that only require a rough facial texture model. The first method can be
utilized offline for the purpose of motion analysis and Active Appearance Model training.
The second one can be used for on-line tracking as well.



5.1 First method

We approach the minimization problem differently. We use the following combined ex-
haustive and directed search in the parameter space. Without loss of generality, we assume
that the dimension of the vector b is 12. The minimization consists of two successive
stages which are utilized by each frame in the video sequence:

1. Exploration stage. At each step t = 1,2, · · · ,T, the locally best parameter, b[t]
j

, is

chosen by changing each parameter i ∈ {1, · · · ,12} under fixed values, [b[t−1]
k

: k �=
i, ;k ∈ {1, · · · ,12}], of other parameters. The choice yields the largest decrease
of the error e(b[t]) with respect to e(b[t−1]) providing that the parameters differ
by only the value of the locally best parameters b[t]

j
. The exploration steps are

repeated while the error decreases further. For each step and for each parameter,
the exploration locally exhausts a given number of the equispaced parameter values
within the range [b[t−1]

i
−∆i/2,b[t−1]

i
+ ∆i/2]. The parameters b[0] are set to the

values computed at the previous frame. In our implementation, ∆i is set to 12
degrees for the rotation angles and to 13 pixels for the 2D translation. The number
of equispaced values is set to 10 or 20.

2. Search stage. The exploration steps converge to a final local minimum value e(b[T ]),
and the vector b[T ] allows for inferring the possible steepest descent direction in the
parameter space. The search along this direction refines further the obtained param-
eters bµ = b[T ] + µ (b[T ] −b[0]). Once the model geometry is found, it is handed
over to the next frame.

The CPU-time of the adaptation based on the above scheme is proportional to the number
of times the error function is evaluated. This number is given by n = dim(b)× N ×
T + nre f i where N is the number of the utilized equispaced values for each parameter,
T is the number of steps needed for convergence, and nre f i is the number of sampled
values used by the refinement stage. For example, when dim(b) = 12, N = 11, T = 4 (on
average 4 steps are needed for convergence), and nre f i = 10 then a typical n should be 538
evaluations per frame. Each evaluation takes about 0.6 ms on a 1500 MHz PC (0.3 ms for
image warping, and 0.3 ms for PCA approximation). Thus, adapting one frame may take
322 ms which cannot allow for a real-time tracking.

To reduce the adaptation CPU-time, one should reduce the CPU-time associated with
the evaluation itself and/or the number of the evaluations, n.

Reducing the evaluation CPU-time by modifying the error function For a given
model geometry (represented by the vector b), the error is given by:

e(b) = ‖x(b)− x̂(b)‖2

There are two main tasks involved in this evaluation: (i) image warping, and (ii) PCA
approximation. Our idea is to replace the synthesized image, x̂(b), with the one computed
at the previous frame. Therefore, the error becomes :

e(b) = ‖x(b)− x̂ f−1‖2 (7)

Using this error function, the task of PCA approximation is skipped, and only the task of
image warping remains leading to a CPU-time earning that is proportional to the number



of texture modes (eigenfaces). Thus, the CPU-time associated with the evaluation is now
reduced to 0.3 ms. Note that the PCA approximation is carried out once per frame once
the current geometry is estimated. Therefore, by changing the error function, the CPU-
time of the above scheme can be reduced to 161 ms.

5.2 Second method (decoupled adaptation)

In addition to the use of the modified error function (Eq. (7)), the second method utilizes
a reduced number of geometrical parameters. For this purpose, we only estimate the
animation parameters by a combined exhaustive and directed search. In other words, we
decouple the head motion (global motion) from the facial motion (local motion). The
head pose estimation exploits the previous adaptation together with previous frame. The
head pose is estimated using a RANdom SAmpling Consensus (RANSAC) technique [6]
combined with the texture consistency measure (Eq. 4) to avoid drifting. Once the 3D
head pose is estimated, the facial animation, α , is estimated using the scheme described
in Section 5.1.

Therefore, using the second method the adaptation of one frame can be achieved in
100 ms, which can be considered as suitable for a real-time or near real-time tracking.
The whole adaptation process is summarized in Figure 3.

f−1I I f

Global adaptation

Local adaptation 

3D pose parameters

Animation parameters

Texture consistency
RANSAC

2D matching

Previous frame Current frame

Exhaustive and directed search

Figure 3: Different steps of the second method (decoupled adaptation).

6 Experiments and accuracy evaluation

To test the proposed methods, we use a training set consisting of 330 images of six d-
ifferent persons from different angles and with different facial expressions. Using this
set a texture model has been built using the PCA method. Figure 4 shows the adaptation
of a test sequence of a previously unseen person (140 frames) using the proposed local-
ly exhaustive and directed search (Section 5.1). Figure 5 shows the adaptation of a test
sequence of 340 frames using the decoupled adaptation (Section 5.2).

Figure 6.(a) displays the adaptation errors associated with a synthesized sequence of
250 frames (known ground truth). The solid curves depict the adaptation errors associated
with the directed continuous method (AAM search described in Section 4). The dashed
curves depict the adaptation errors associated with the combined exhaustive and directed



search (Section 5.1). In this figure, only the three rotations and the eyebrow raiser param-
eter are depicted since a similar behaviour has been obtained with the other geometrical
parameters. For each frame in the synthetic sequence and for each geometrical parameter,
the error is the absolute value of the difference between the estimated value and its ground
truth value used in animating the synthetic images.

Figure 6.(b) displays the same adaptation errors as Figure 6.(a) except that the first
method has been replaced by the second method (Section 5.2) , i.e., the decoupled adap-
tation method (dash-dotted curves). As can be seen, the two proposed adaptation methods
are more accurate than the directed continuous search. Also, the first method (the slowest
one) seems to be slightly more accurate than the second method.

7 Conclusion

We have proposed two methods for model-based face adaptation. The first method can be
used for building accurate Active Appearance Models. The second one can be used for
the same task as well as for real-time tracking. Both methods only require a simple facial
texture model and exploit no prior information about a gradient matrix. The proposed
schemes allow one to take into account the multi-modal character of the error function.
Moreover, the proposed schemes offer a lot of flexibility as to how many facial animation
parameters can be used at running time, which cannot be done with a directed continuous
technique where the geometrical parameters are fixed by the training stage.

Figure 4: Adaptation based on the exhaustive and directed search using the first test se-
quence (140 frames).



Figure 5: Decoupled adaptation using the second test sequence (340 frames).
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(a) Directed continuous search vs. our first method (see text).
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(b) Directed continuous search vs. our second method (see text).

Figure 6: Adaptation errors using a synthetic sequence of 250 frames.


