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Abstract

Proteomics research relies heavily on electrophoresis gels, which are com-
plex images containing many protein ‘spots’. The identification and quantifi-
cation of these spots is a bottleneck in the proteomics workflow. We describe
a statistical model of protein spot appearance that is both general enough to
represent unusual spots, and specific enough to introduce constraints on the
interpretation of complex images. We propose a robust method of automatic
model construction that is used to circumvent manual model construction
which is subjective and time-consuming. We show that the statistical model
of spot appearance is able to fit to image data more closely than the com-
monly used spot parameterisations which are based solely on Gaussian and
diffusion formulations.

1 Introduction

Proteomics is the study of the complete set of proteins in a cell or organism throughout the
entire life-cycle. It is hoped that this research will enhance understanding of cell function
in general and, more specifically, it will also identify proteins that can be used as drug
targets and disease markers. The main barrier to proteomics research is complexity. It is
estimated that total number of proteins in a human cell could be as large as 500,000. Key
to any analysis are separation and detection technologies. A well-established and widely
used technology is 2-Dimensional Electrophoresis (2-DE). This process separates protein
mixtures by iso-electric point (pI) and molecular weight (MW). Separation results from
two separate diffusion processes which are driven along orthogonal axes in a polyacrimide
gel, resulting in a grid of protein strains. The separated proteins are visualised by pre or
post staining, yielding an image, containing protein ‘spots’. Figure 1 shows two segments
of 2-DE gel images stained using different techniques. In practice, 3,000-4,000 spots can
be visualised on a single gel image, each representing an individual protein strain. The
analysis of these complex gel images is a significant bottleneck in the proteomics research
workflow [6].
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(a) Silver
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Figure 1: Example electrophoresis images with watershed boundaries. (a) A sliver stained
image with 403 delineated fitting regions. (b) A fluorescent dye image with 573 fitting
regions.



(a) Gaussian (b) Flat-Top (c) Irregular

Figure 2: Examples of electrophoresis gel spots. The top row shows the appearance of the
spot in the image with contours of constant gray-level overlayed. The bottom row shows
a 3D mesh representation of the same data. (a) Gaussian, (b) ‘Flat-top’, (c) Irregular.

Image analysis of 2-DE gels requires the identification of a large number of individual
spots. These must be characterised for further analysis of the sample. One of the first
steps in any spot detection algorithm is the segmentation of individual spots from the
background. After the segmentation step, spots are quantified and represented as a list
of parameters over which further analysis can be carried out. Commonly, protein spot
models are used to aid quantification by imposing constraints, which in turn improves the
robustness of the solution. The most commonly used spot model is a Gaussian function
[4]:
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where B is background intensity, I is spot intensity, x0 and y0 control spot location and σx

and σy control the spread of the Gaussian independently in x and y directions. Figure 2(a)
shows an example of a typical protein spot with a Gaussian profile. This model is assumed
to provide a good representation of most spots present in most gel images. However, it
has been shown that Gaussian models produce an inadequate fit to some protein spots,
most notably large volume, saturated spots [1]. Figure 2(b) shows an example of a high
volume protein spot exhibiting a saturated, ‘flat-top’ shape. Bettens [1] addressed this
shortcoming by proposing a model based on the physics of the spot formation process.
Protein spots are formed by a diffusion process, which is only adequately represented
by a Gaussian when the initial concentration distribution occupied by the sample has a
small area. Bettens’ diffusion model more adequately represents spots in the gel when
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, B is background intensity, C0 is initial concentration, D′
x

and D′
y are related to the diffusion constants in the two main directions of diffusion, x0

and y0 control location and a′ is the area of the disc containing the protein material. As
a → 0 equation 2 reduces to the bivariate Gaussin (eqn. 1).

Both the Gaussian and diffusion models assume perfect diffusion across the gel medium.
Spots created by a perfect diffusion process will be regular and symmetric. In practice,
the diffusion process is not perfect and spots can be formed with unpredictable, unusual
shapes. An example of such a spot is shown in Figure 2(c). To represent more adequately
the full range of observed spot shape, we have developed a new protein spot model that
is both flexible enough to represent irregular shape variation and specific enough to retain
usable constraints on the interpretation of gel images. The physical process by which
irregular spots are formed is extremely complex. It would be daunting task to directly
estimate all the physical variables affecting spot formation. Instead, we have used a Point
Distribution Model (PDM) [3] to represent observed variation in spot shape. Gaussian
convolution simulates the diffusion process and forms a full model of spot appearance. In
section 2 we describe the model, together with an automatic method for model construc-
tion. Results of an evaluation of the model and a discussion are presented in sections 3
and 4.

2 Modelling Protein Spot Shape and Appearance

To represent observed variation in protein spot shape we have used a PDM trained with
a set of protein spot boundaries. The PDM only represents shape, but we require a full
model of spot appearance. Protein spot formation in 2-DE gels is a diffusion process
which is equivalent to convolution of an initial concentration distribution with a 2-D Gaus-
sian kernel. We have assumed the initial concentration distribution can be represented as
a flat 2-D shape within the boundary represented by the shape model. This flat shape is
convolved with a bi-variate Gaussian kernel giving a full model of spot appearance. Fig-
ure 3 shows an example of the full spot appearance model. We define our model using the
parameter vector �p = (B, I,x0,y0,σx,σy,s,�bs) , where B is an additive background term, I
is spot intensity, x0 and y0 control location, σx and σy control the spread of the Gaussian
along the two directions of diffusion, s is a scaling for the spot shape (from the alignment
procedure) and�bs is a vector of PDM shape parameters. This model is equivalent to the
bi-variate Gaussian when s = 0, and is equivalent to the diffusion model when the shape
parameters,�bs , represent an elliptical shape.

2.1 Automatic Spot Model Construction

Section 2 described the basis of the models we use. Here we address the practical issue
of building the model: determining the training shapes from spot images and calculating



Figure 3: Spot model formation. A flat shape is convolved with a bi-variate Gaussian
kernel, which is equivalent to a diffusion process.

the distributions of parameter values. In many applications of PDMs, manual marking of
landmark points has been used. Due to the complexity of the images, and the number of
spots required to build a model, this is an impractical strategy in this case. We proceed
by segmenting the spots in the training images, smoothing the boundaries obtained using
a general shape representation and making the landmark points evenly spaced round the
resulting boundary. As the boundaries are extracted from real image data, a number of
overlapping spots will be represented. These need to be detected and excluded from the
training data, as their inclusion would bias the model and result in reduced specificity.

2.1.1 Generating the Training Set

Raw spot boundaries are obtained by thresholding the Laplacian of Gaussian transform
of the training gel images. The resulting boundaries are smoothed using a Fourier shape
descriptor [5] resulting in a parametrisation of the spot shape by the Fourier coefficients
(5 harmonics). Spot appearance is modelled by convolving this smoothed shape with a
Gaussian kernel, in the same way described in section 2. The parameters of this spot
appearance model are then optimised to improve the fit to the original image data using
a Levenberg Marquardt gradient descent algorithm. This provides an adjusted parametri-
sation of the shape matched to the image data. In this way the shapes used to build our
statistical model are derived from our model of spot appearance, rather than the some-
what arbitrary data-driven segmentation. Using a Fourier representation in this strategy
does not impose any explicit shape constraints on the boundaries extracted. The PDM
landmark representation is obtained from the resulting spot shapes by placing 25 evenly
spaced points around the boundary.

2.1.2 Robust Model Building

Automatic generation of training shapes will include incorrect shapes in the model. These
shapes are the result of unseparated overlapping multi-spot groups. The Fourier shape
representation imposes no explicit shape constraints, other than smoothness, so it is not
possible to filter these incorrect segmentations at that stage. We could filter the result-
ing shapes by hand, but this would be a highly time consuming and subjective process.
Rather, we have chosen to reduce the influence of such shapes by using Robust Principal
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Figure 4: Robust PCA. (a) The first 3 of 10 modes (±2 std.dev.) PDM built using standard
PCA. (b) The first 3 modes of a PDM built using Robust PCA. Both models were trained
with the same data.

Figure 5: Four examples of shapes that have been downweighted by robust PCA. Each
shape is superimposed over the image patch used in its generation.

Component Analysis [2] in the model building. We expect the number of incorrect shapes
to be small and their shape to be unusual, and therefore they can only influence the model
as outliers in the shape distribution. Robust PCA iteratively reduces the influence of out-
liers on the resulting model. The effect of the robust PCA can be seen in Figure 4. The
figure shows two PDMs, one built using standard PCA (Figure 4(a)) and one built using
robust PCA (Figure 4(b)). The models were generated from the same training data. Both
models represent the spots by principal components that retain 99% of the observed vari-
ance, in the robust case this is 99% of the variance remaining after the iterative weighting
procedure. The standard model represents the retained variance in the training data using
10 modes, whereas the robust model requires only 6 modes. The contribution of each
mode to the total variance of the training set is shown for each model. The first mode
of the standard model represents a large variation in aspect ratio with an apparent ’waist’
becoming visible at the extremes of the mode. This mode would allow the model to rep-
resent multiple overlapping spots, which is undesirable. There is no mode in the robust
model that allows shapes with ’waists’. Figure 5 shows examples of shapes that have
been treated as outliers by the robust analysis. They all represent highly uncharacteristic
shapes and several are clearly multiple spots.



3 Evaluation of Models

We have compared the results for fitting the statistical spot model to image data with
those achieved using the Gaussian and diffusion models. The experimental procedure
was as follows. Spot regions were detected in a test image using a watershed algorithm.
Each of the spot models was fitted to each spot region using a Levenberg-Marquardt non-
linear optimisation algorithm to determine the best model parameters, minimising the

following residual: r = ∑x,y∈R

[
(S(x,y|�p)− I(x,y))2 /
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where R is the

region of the image over which fitting takes place, x,y∈R are the coordinates of the pixels
within the fitting region, I(x,y) are image values, S(x,y|�p) are the model values given the
parameter vectors, Imax

R , Imin
R are the maximum and minimum image values within the

region, and nR is the number of pixels within the region. This residual provides a measure
of model fit error that is normalised with respect to the intensity of the spot (which we
have approximated as Imax

R − Imin
R ) and the size of the fitting region (the number of pixels

nR). This residual form allows direct comparisons of fit quality to be made between high
and low volume spots. The three models were fitted to 403 watershed delineated spots
from a silver stained E.coli gel (375x228 pixels, 8 bit) and 573 spots from a gel stained
with a fluorescent dye (2896x2485 pixels, 24 bit). The silver image is low-resolution and
contains many saturated and overlapping spots, whereas the fluorescent image is much
higher quality and contains fewer saturated or overlapping spots.

The mean residuals r̄ for each model after fitting to all regions in both images are
shown in Table 1. In general the fitting results for the fluorescent image are better due
to the higher resolution of the image data. The statistical model results in the smallest
average residual after fitting for both images. Figure 6 shows the mean residual for each
spot model and image, grouped by volume. Group one contains the smallest 10% of spots
by volume, rising to group 10 which contains the largest 10% of spots by volume. In
both cases, the largest improvements in fit made by the statistical model are associated
with the largest spot volumes. We have assumed that high volume spots are more likely
to produce unusual spot shapes, which, we have argued, are the best represented by the
statistical model. For the silver image, small and medium volume spots (groups 1-6) give
fits for the Gaussian, diffusion and statistical diffusion models that are almost equivalent.
However, the statistical model results in reductions in residual for all volume groups of
the fluorescent image. This suggests that in the fluorescent image all spot groups contain
shape variation away from Gaussian assumptions, even the smallest spots by volume.
This trend is not visible in the silver image data and this may be due to the low-resolution
of the image preventing full convergence. For all spot volume groups the statistical model
results in fits that are better than or equivalent to the fits of the other two models. This is
achieved in both images despite large visual and resolution differences.

These results demonstrate that the statistical model is able to fit well to a wide variety
of gel image types. This is to be expected, as the model has the most degrees of freedom.
An important question is whether the reduction in residual corresponds to a increase in
model specificity. Both images contain watershed fitting regions with multiple spots. A
specific model should not represent these regions well. We have carried out the following
experiment to quantify the specificity of each type of model. Our aim is to determine the
relative ability of the models to distinguish between single and multiple spots, using their
model fit residual value. We have manually classified each fitting region in the fluorescent
image (Figure 1(b), 573 regions) into one of two classes: single spot regions (472 regions)



Model Silver r̄ Fluorescent r̄
Gaussian 8.3×10−3 5.11×10−3

Diffusion 7.83×10−3 4.94×10−3

Statistical 7.49×10−3 3.63×10−3

Table 1: Mean residual after model fitting to 403 spots in the silver image and 573 spots
in the fluorescent image.

or multiple spot regions (101 regions). Figure 7 shows five examples of the single spot
region class, containing irregular, single spots and five examples of regions containing
multiple spots, together with the fits and residuals of each model. For each of the single
spot regions, the lowest residual is achieved with the statistical model. The fits of all
models to multi-spot regions are visually poor (Figure 7(b)). Examination of the residuals
of these 10 regions illustrates that, in general, it is not possible to define a threshold on
residual value that perfectly discriminates between the two groups. This is the case for
all the models. Figure 8 shows the estimated discrete probability distributions for each
model for each region class. The separation of the class distributions is not good for any
of the models, However, a more specific model will increase the separation between the
two distributions. The distributions are non-normal, so to quantify the difference between
each class we have chosen to use the non-parametric Kolmogorov-Smirnov (K-S) test.
The K-S test measures the similarity between two datasets by finding the maximum dis-
crepancy between their cumulative frequency distributions, which is called the d-statistic.
The d statistic ranges between 0 and 1, the smaller the value of d, the more similar the
two distributions. The discrete probability distributions (using 75 bins) and K-S distance
measures for the class distributions of each model are given in Figure 8. The statistical
model results in a K-S distance of d = 0.672, indicating that the distributions of single
and multiple spot residuals are more distinct than those of the Gaussian and diffusion
models (d = 0.536 and d = 0.515 respectively). This results shows that, as well as giving
a more accurate quantification of 2-DE protein spots, the statistical model is more specific
than the other models. The careful training and robust construction of the model results
in a representation that is specific to single spots, and therefore that can not represent
multiple spot regions significantly better than the other models. These selective fitting
improvements lead to an increase in the separability of the two types of fitting regions.

4 Concluding Remarks

In this paper, we have described a statistical model of protein spot appearance, together
with a automatic construction algorithm which takes into account the complexity of the
image data. This model is both flexible and specific enough to represent the true range of
protein spot appearance found in complex 2-DE gel images without the need to develop a
sophisticated theoretical model of the physical processes driving irregular spot formation.
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Figure 6: Mean residual r̄ of model fit with error bars showing +1 std. err., plotted by
increasing spot volume for each model. Spot volume group 1 contains the smallest 10%
of spots by volume, rising to group 10 which contains the largest 10% of spots by volume.

(b) Multi-spot regions
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(a) Single irregular spots
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Figure 7: Example fits of each model to spot regions from the images shown in Figure
1, with resulting fit residuals for each model. (a) Shows examples of regions containing
single spots with irregular shape. The improved fit of the statistical model is clear in
each case. (b) Shows regions containing multiple spots. None of the models generate an
adequate fit to these spots.
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(a) Gaussian (d = 0.536)
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(b) Diffusion (d = 0.515)
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Figure 8: Discrete probability distribution (75 bins) of fit residual for single and multiple
spot fitting regions with K-S distance measure. (a) Gaussian model (b) Diffusion model
and (c) statistical model.
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