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Abstract

The MPEG-4 standard generated a need for the extraction of Video Ob-
ject Planes for usage in video retrieval and description. Two later standards
MPEG-7 and MPEG-21 further the need for systems requiring minimal user
interaction for the accurate extraction of semantic video objects. Many pre-
vious approaches have either relied too heavily on user interaction or made
compromises in end accuracy to achieve a faster segmentation process. With
the advancement of computer processing power we propose a higher quality
segmentation process with end application requiring a hardware implemen-
tation. The focus of our approach is to achieve a reliable and high quality
segmentation mask per frame using sophisticated offline techniques to min-
imise the user interaction within the process.

1 Introduction

The segmentation of semantic objects within a video sequence is becoming increasingly
important in many multimedia applications. The concept of a semantic object is depen-
dent on the application — an object may have different significance for a human visual
system or for video compression performance. We propose a flexible system to segment
semantic video objects in generic scenes based on the perception of objects in the scene
with regards to the human visual system, allowing meaningful objects to be located, seg-
mented and tracked over a series of video frames. Since our work is developed in the con-
text of video post production we introduce a user input stage. Unsupervised techniques
for the segmentation of semantic objects from generic scenes do not exist [12] therefore
human interaction is required to define the semantic video objects in one or more frames
within the video sequence. Beyond the operator input we also take advantage of sophis-
ticated offline algorithms requiring more processing power to improve the segmentation
quality and reliability.

Segmentation methods for 2-D images may be divided primarily into region-based and
boundary-based methods. The approach is either to locate objects based on homogene-
ity of localised feature vectors or by measuring gradient information in the feature space
to locate object boundaries. Many previous attempts at segmenting using region-based
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methods have applied chromatic, spatial, temporal or motion information to distinguish
the homogeneous regions belonging to scene objects and have been used for applications
such as visual surveillance [6], MPEG-4 encoding [10, 9] or more generic object seg-
mentation schemes [2]. Under the framework of the European ACTS-MoMuSys project,
the Video Object Generator with User Environment [9] provided a set of algorithms for
spatial and temporal segmentation and object tracking, although the requirement of bal-
ancing efficiency and robustness provides scope for improving upon the segmentation
process taking advantage of the increasing computational power of desktop workstations.

In a supervised region-based approach many researchers have turned the problem into
that of classification. We take the image data to be an array of feature vectors and use a
classifier to assign the set of user-provided object labels to this data set. There are many
different types of classifier that can be used for this assignment, such as neural networks,
clustering, decision trees, histograms or support vector machines. The feature vector
extracted at a pixel often includes chromatic information alone [6, 11, 10]. The problem
with this approach is that in scenes with several objects of similar colour distribution
the objects can be assigned the same label due to a lack of spatial distinction. Gaussian
mixture models have been proven to be an efficient and valid way to classify feature
vector distributions in chromatic feature space. Additionally, spatial information can be
appended to the feature vector to define the shape of an object [4, 8]. Other information
used may include texture [1], motion [2] or depth information if available [7]. Texture and
motion measurements use neighbourhood based operations. We have found they tend to
degrade segmentation accuracy at the object boundaries in generic video scenes and are
more suited to specific applications. For example, texture descriptors have been shown to
improve the segmentation of animals exhibiting natural textured camouflage where colour
alone cannot be used to separate the scene objects [4].

Gaussian based distributions are very useful for modelling data since they can be up-
dated efficiently in contrast to other types of classifier. Clustering using Gaussian mixture
models for segmentation and tracking of semantic scene objects has been explored in
many papers. McKenna et al [11] and Marlow and Connor [10] showed how a mixture
of Gaussians could be used to segment scene objects using a Bayesian segmentation rule.
On a per frame basis, Gaussian mixture model’s can be updated using the expectation-
maximisation(EM) algorithm [3], this can be adapted to changes in the spatio-chromatic
distribution over a video sequence. Figueiredo and Jain [5] propose an unsupervised al-
gorithm for learning a finite mixture model that avoids several drawbacks of the standard
EM algorithm — it is capable of selecting the number of components, is robust to ini-
tialisation and avoids the possibility of convergence to singular values within the feature
space.

The addition of spatial data to Gaussian mixture models has proved to be a difficult
integration. Whilst a Gaussian parametric model can be used to coarsely model the spatial
extent of an object [1, 2], the updating and adaption of the model has proven a difficult
task. Mixture models can propagate small segmentation errors over the course of an
image sequence and the parametric form of the model is not well suited to modelling
the spatial extent of an object over time. Everingham and Thomas [4] showed a non-
parametric Gaussian kernel shape model to be a superior technique for fine modelling
of the spatial extent of an object in a joint distribution with a coarse spatio-chromatic
mixture of histograms. The spatial model in this approach did not take into account what
we term articulated motion — significant differences in the motion of individual sub-



object regions, knowledge of which can improve the adaption of the shape model for
objects exhibiting regions of varying motion.

In this paper we present an algorithm combining Gaussian modelling of chromatic
data with Gaussian kernel shape modelling of internal sub-object regions to overcome
many shortcomings of previous approaches. The sub-object regions model the spatial
areas with colour homogeneity. These regions are tracked spatially using an α �β filter
and are updated on a per frame basis using a Bayesian segmentation scheme combining
spatial and chromatic information.

2 Modelling the Probability Density Function

For a semantic video object, Λ�, we can determine the joint probability of the spatial and
chromatic information for all feature vectors belonging to that object in the current frame,
It . For a feature vector, a, the joint distribution is given by the form

p�a� � p�f�p�x� � p�r�g�b�p�x�y� (1)

The form of this expression assumes an independence between the chromatic infor-
mation of an object and its spatial distribution. We model this probability density function
(pdf) for each object using a combination of parametric and non-parametric models. We
model the observed chromatic distribution for each object using a Gaussian mixture model
comprising K multivariate densities of the form [3]
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where k is the covariance matrix and µk is the chromatic mean of the k �th Gaussian
cluster, φk. fi is the chromatic observation at a pixel i. The a posteriori probability that
this observation, fi, belongs to cluster φk is given by Bayes theorem

P�φk�fi� �
p�fi�φk�P�φk�

p�fi�
(3)

where

p�fi� �
K

∑
k�0

p�fi�φk�P�φk� (4)

Using this model for chromatic data we can determine the probability that an ob-
servation, fi, belongs to the object Λ�. We model the observed spatial distribution for
each object using a mixture of sub-object Gaussian kernel shape models [3]. An object,
Λ�, contains S sub-object regions. The spatial pdf of each sub-object region, λ s (where
s � �0 � � �S�), is modelled using a Gaussian kernel density of the form

p�xi�λs� �
1
N

N

∑
n�0

g�xi�xn�σ� (5)

where xi is the spatial observation at pixel i, g�x i�xn�σ� represents a bivariate Gaus-
sian density function and xn represent the N spatial observations at pixels within the sub-
object region, λs. Evaluating this function will be expensive if the value of N is large.



Since the spatial distribution is 2-D we achieve a faster evaluation by forming a binary
image for each sub-object region and convolve with a 2-D Gaussian kernel. This convo-
lution forms a discrete map of the density over the image:

p �xi�λs� �
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where δ is the Dirac delta function. Changing the value of σ in the model allows
the uncertainty of the object shape to be changed, in scenes with large motion of sub-
object regions setting σ higher allows the spatial model to adapt to such motions. The a
posteriori probability that a spatial observation, x i, belongs to the sub-object region λ s is
given by Bayes theorem:

P�λs�xi� �
p�xi�λs�P�λs�

p�xi�
(7)

where

p�xi� �
S

∑
s�0

p�xi�λs�P�λs� (8)

2.1 Initialisation

User input at a key frame is given in the form of a segmentation mask, as shown in Figure
1.

Figure 1: Showing the key frame(right) for the foreground object for frame 70 of the cif
football sequence(left)

The key frame mask is not a ground truth segmentation mask for the frame, the areas
of uncertainty around the object boundary are not marked. Using this key frame, we
generate a Gaussian mixture model for each object in chromatic feature space using the
Figuiredo and Jain [5] algorithm. This initialises the mixture and determines the number
of clusters in an unsupervised process. On a per pixel basis for an object, Λ �, spatial
regions are generated from the Gaussian mixture model. This is achieved by choosing
the cluster index k� for pixel i that maximises the a posteriori probability, thus creating a
disjoint partition of the image into K regions for each object.

k�i � argmax
k

P�φk�fi� � argmax
k

p�fi�φk�P�φk�

p�fi�
(9)



To generate the initial sub-object regions we run a connected components algorithm
on the disjoint partitions. The sub-object regions for the first frame are shown in Figure
2 for the foreground object. A minimum component size is used to remove semantically
insignificant regions, the regions removed by this process are assigned to valid sub-object
regions in the per frame update scheme.

Figure 2: Showing false colour representations of the disjoint cluster partition(left) and
the result of a connected components algorithm(right) with minimum region size of 25
pixels. Frame 70 for the cif football sequence.

For a sub-object region, λs, we parametrically model the assumed homogeneous colour
distribution using a single multivariate Gaussian in chromatic feature space. This chro-
matic information is used in the Bayesian update rule for the sub-object spatial models
shown in Section 2.2.

2.2 Update

On a per frame basis the sub-object spatial models are tracked and updated to adapt to the
changing spatial distribution of the parent object. The chromatic models are not adapted,
if the scene objects change appearance such that the chromatic information is no longer
fitted by the model we assume the operator will use a new key frame from which the
process is reinitialised.

For a new frame, the mean of the modelled sub-object spatial pdf is tracked and up-
dated from previous observations using α-β filter tracking of the form

Rt � αMt ��1�α�Rt�1 (10)

where Rt represents the state for the current frame, Rt�1 is the state in the previous
frame and Mt is the current frame observation data. When used to predict the translation
velocity of the modelled sub-object spatial pdf, v, the α-β filter becomes:

vt � α
�
µt�µt�1

�
��1�α�vt�1 (11)

with µ denoting the mean of the modelled sub-object spatial pdf and the new observed
velocity at time t, v

�

t � µt � µt�1. The choice of the regularising factor α affects the
damping characteristics of the update scheme, a value of 1 makes the tracking update
independent of the state history, while making α � 0 represents a constant velocity model
where the current velocity is unchanged by data observations.

The sub-object spatial models are translated by the tracking process, dependent on
the velocity predicted by this process. From the predicted sub-object spatial models we



can formulate the new spatial distribution of the sub-object regions using the MAP update
rule at each pixel observation a i � Λ�, choosing the sub-object index s� such that

s�i � argmax
s

P�λs�ai� � argmax
s

p�ai�λs�P�λs�

p�ai�
(12)

where, from Equation 1,

p�ai�λs� � p�fi�λs�p�xi�λs� (13)

p�xi�λs� is obtained from the sub-object spatial model and p�f i�λs� is obtained using
the Gaussian density model of the chromatic distribution in the sub-object region.

2.3 Video Object Segmentation

Bayes theorem is applied to classifying pixels in the scene with the most probable object
label by choosing the label associated with the object classification Λ� that maximises the
a posteriori probability for a given observation at pixel i:

Λ�

i � argmax
Λ

P�Λ�ai� � argmax
Λ

p�ai�Λ�P�Λ�

p�ai�
(14)

where, from Equation 1

p�ai�Λ� � p�fi�Λ�p�xi�Λ� (15)

The prior probability for each object is obtained using the previous observed segmen-
tation mask.

3 Results

To evaluate the proposed approach we use subjective analysis of the segmentation results
of our process and that of an adaptive Gaussian mixture model [11] in spatio-chromatic
image space. Objective measures of segmentation quality cannot yet describe the accu-
racy of the segmentation in respect to the semantics we define as being important. We
analyse our results for two cif sequences — football (26 frames) and claire (50 frames),
shown in figure 3, as well as presenting image compression/articulated motion analysis for
the MPEG-1 ice skater sequence (81 frames) and key frame analysis for the qcif foreman
sequence (200 frames).

The segmentation results for the proposed process are shown in figure 3. For the claire
sequence the connected components algorithm partitioned the foreground object into 22
sub-object regions and the background object into 70 regions. Likewise, for the football
sequence the sub-object region count was 48 and 226 respectively. For both sequences
the minimum initial region size was empirically set to 16 pixels, equivalent to a 4� 4
neighbourhood. In the update procedure we set the sub-object spatial model smoothing
parameter empirically to σ � 3. We found in general scenes values between σ � 1 (for
low motion) and σ � 5 (for high) to be sufficient for constrained spatial model adaption.
In the sub-object tracking module, α was set to 0�5.



Figure 3: The sequences used for evaluation — the cif claire sequence (50 frames) and
the more difficult cif football sequence (26 frames).

The results for the claire sequence show the proposed approach can produce a high
quality segmentation in sequences with well defined objects. The more difficult football
sequence highlights the problem of spatial adaption between video objects sharing iden-
tical chromatic space. The proposed approach demonstrates a well constrained spatial
model in this sequence. By the final frame the segmentation mask, although degraded
beyond usefulness, still contains a significantly greater proportion of foreground object
pixels to mislabelled pixels. Our segmentation process has a failure mode when fore-
ground regions occlude background regions of similar chromatic signal allowing the sub-
object regions to migrate from foreground to background objects and vice versa, causing
fragmentation of the segmentation mask.

Figure 4: Segmentation Results using the proposed approach for the cif claire sequence
(50 frames) and the more difficult cif football sequence (26 frames).

When comparing the results of our approach to an adaptive Gaussian mixture model, it
can be seen that the unconstrained adaption of the mixture model in the spatio-chromatic
feature space causes problems at object boundaries, where motion blur or translucent ar-



eas (e.g. hair) combine the chromatic signal of neighbouring objects. While the mixture
model can model the initial few frames of the sequence sufficiently, the adaption is un-
constrained and the parametric form of the Gaussian mixture is too generalised to model
the subtle spatial changes of the semantic objects over a video sequence. In the claire
sequence the mixture model performs adequately, the segmentation mask degrades when
the model adapts to the background spatio-chromatic feature space due to the translucent
hair silhouette. The football sequence shows how the parametric form for the Gaussians
inadequately model the spatial distribution of the foreground object and subsequently the
mask quality degrades significantly over the initial few frames. The number of clusters
used for modelling the feature space were 9 for the background object and 19 for the fore-
ground object in the claire sequence and 22 clusters for both foreground and background
objects in the football sequence.

Figure 5: Segmentation Results using an adaptive Gaussian mixture model for the cif
claire sequence (50 frames) and the more difficult cif football sequence (26 frames).

3.1 Image Compression, Articulated Motion and Sensitivity to Key
Frame Choice

Compression artifacts in the video sequence can require the user to reduce the spatial
model smoothing factor, σ , in an attempt to prevent the mis-adaption of the model over
poorly defined object boundaries. In this scenario, the presence of articulated motion in
sub-object regions can cause an object-level kernel shape model [4] to fail, as seen in fig-
ure 6. Using a mixture of sub-object kernel shape models, the image regions representing
the hands of the skater can be tracked and updated successfully over the sequence. No-
tice how the MPEG-1 artifacts degrade the overall segmentation quality, especially when
using an object level kernel shape model where the adaption of the model does not take
into account the localised sub-object motion and chromatic distribution.

Figure 7 shows how a poorly chosen key frame leads to segmentation problems that
can be avoided. The key frame at frame 0 contains little or no colour information for
the eyes, hair or grey clothing of the subject. At frame 114 errors can be seen in the
segmentation mask around the subjects clothing, hair and eyes. These areas have not
been modelled sufficiently by the sub-object regions. By choosing a later key frame these



Figure 6: Showing the original frame (left), segmentation using an object level kernel
shape model (centre) and segmentation using a mixture of sub-object kernel shape models
(right) for frame 19 of the MPEG-1 ice skater sequence

problems are rectified and the clothing, hair and eyes are modelled more sufficiently.

Figure 7: Showing the key frame segmentation 0 (left) and the segmented object at frame
114 (right) for the qcif foreman sequence

4 Conclusions and Future Work

We have shown in this paper a sophisticated offline algorithm that provides flexible and
stable segmentation of semantic video objects within a video sequence. The user input is
minimal, with only one key frame and three parameters required to start the process. We
have demonstrated that modelling a joint probability using a Gaussian mixture model in
chromatic feature space and a mixture of sub-object Gaussian kernel shape models as a
valid approach for propagating a semantic segmentation mask over a video sequence.

Future work is anticipated in many areas of the proposed approach. These include
improving the handling of occlusion with multiple scene objects, providing a frame work
for unsupervised detection of new scene objects and allowing constrained adaption of the
colour model. We aim to look at unsupervised techniques for choosing the algorithm
parameters — the spatial model smoothing parameter, σ , the minimum region size in the
connected components algorithm and the α �β filter α value.
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