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Abstract 
 

We present a new simple iterative shape-from-shading algorithm, which gives 
greater numerical stability and as a result more accurate shapes than the 
previous one. The Jacobi’s iterative method is applied to the difference 
between the image and the reflectance function of the three depth parameters 
to get an iterative relation, which is then modified so that all the eigenvalues 
of the inverting matrix consist of three squared terms. This prevents the 
determinant of the matrix from being null to a great degree, resulting in a 
more accuracy of the shape estimate. We also rotate the coordinates by an 
arbitrary angle, when needed, to improve the reconstruction with no such 
shape distortions as stripe-like ones and with a resolution enhancement. 
Computer experiments were made using several synthetic and real images to 
show its effectiveness.  

 
1 Introduction 
 
Since Horn initiated the research on shape-from-shading [1], significant developments 
have been made [2], [3]. They may be classified to local [4], [5], minimization [6], [7], 
linear [8], [9], propagation [10], [11], and deformable model based [12] approaches. 
Minimization approaches are based upon minimizing a given energy criterion to 
estimate the shape. Zheng and Chellappa [6], for example, introduced image gradient 
and integrability constraints to obtain fine details. Linear approaches linearize the 
reflectance map in tilts or depth. Tsai and Shah [8] linearized the map in the depth and 
used the Jacobi iterative technique to derive an iterative relation. We presented a 
nonlinear approach by generalizing their method and by carrying out the bi-directional 
estimation to minimize shape distortions [13]. Propagation approaches obtain a shape 
starting from some initial curve, which uses such special points as the brightest or the 
darkest. Kimmel et al., for example, show that good shape reconstruction is possible 
using some boundary conditions [11]. The deformable model based method literally 
uses such a model in combination with the scene irradiance as a constraint [12]. 

These approaches have pursued accuracy in reconstructed shape, but numerical 
stability has been the issue as well. Horn and Brooks addressed it in the minimization 
approach [14]. The above-mentioned approaches are also vulnerable to numerical 
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instability. To avoid it, the iteration is limited literally [6] or effectively [8] in number, 
or the image is normalized to a value less than unity [11], [13]. The limitation may often 
deteriorate the accuracy. In our previous algorithm the bi-directional estimation was 
introduced to partially compensate for the deterioration. The deformable model based 
method appears to be more stable, but it appears to lack accuracy for complex images 
such as real ones. 

In this paper we improve our previous algorithm in numerical stability, which is very 
simple to implement and successfully reconstructs shapes from images for illuminant 
vectors other than ≈(a,-a,1). We modify the inverting matrix in the iterative relation to 
make it more robust, where the matrix transforms the change in depth to that in image 
intensity. We also rotate the coordinates by an arbitrary angle to maximize the quality of 
shape. Computer experiments show that the new algorithm is able to give more accurate 
shapes for a variety of objects and illuminating conditions. 
 
2 Principle 
 
The object is illuminated from a direction of light to obtain a shading image. Given an 
appropriate reflectance function R(p,q), it may be equal to the image I(x,y): 
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where x, y = 1, …, N, p and q are local tilts of the surface, and the image is normalized 
to unity. Here we assume that the object has parts whose surface normal P is parallel to 
the illuminant vector S. The two unit vectors are given by their components as 
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Using the depth z(x,y) of the object, p and q are given by -∂z/∂x and -∂z/∂y, respectively. 
This description is different from that used by Woodham [15], but it may be more 
intuitive and convenient. Then, if we assume the Lambertian surface, the reflectance 
function, normalized by the albedo, is given by their scalar product:  
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The normalization stands on the same assumption as that for the image. If we use the 
following discrete forms for p and q 
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then R can be regarded to be a function of three variables, z(x,y), z(x-1,y) and z(x,y-1). 
We define the function f(x,y) as the difference between the image and the reflectance 
function: 
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Then, applying the Jacobi’s iterative method to the function f results in the relation: 
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where n is the number of iterations. Eq. (7) can be rewritten in matrix form as 
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where f is a vector of N2 elements of f(x,y), z is a vector of N2 elements of z(x, y), and g 
is a matrix of N2xN2 elements that are made of the terms of ∂f(x,y)/∂z(x,y), 
∂f(x,y)/∂z(x-1,y) and ∂f(x,y)/∂z(x,y-1).  

In our previous algorithm, the shape is reconstructed iteratively using the relation in 
Eq. (8), beginning with null values z(0) = 0. In this case the determinant of g is given by 
the product of all its diagonal terms given from Eq. (7) as 
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They become null for the image parts where P is parallel to S, as seen by inserting Eq. 
(4) in Eq. (6) and the resulting expression in Eq. (9). Existence of even one such 
element nullifies the determinant. In this sense, numerical instability is unavoidable in 
this method if the object has such parts.  

Eq. (8) can nominally be rewritten for z(n) as 
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Here let z′, G′ and F′ have the elements of z, G and F, respectively, in a reduced shape 
reconstruction area of 1≤x≤N-1 and 1≤y≤N-1. Then Eq. (10) is rewritten as 
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where D is a newly introduced factor of de-acceleration. The eigenvalues and the 
elements of F′, F′(x,y), are given, respectively, by 
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First, it is seen that the eigenvalues consist of three squared terms in contrast to one in 
Eq. (9). When we use z(0) = 0, those in Eq. (14) are not null except for S = (0,0,1), while 
those in Eq. (9) are null for the class of (a, -a, 1), where a is a positive or negative real 
number including zero. Hence we may be able to expect greater stability with the 
modification. Second, it may be seen that the seven depth terms, z(x-1,y+1), z(x,y+1), 
z(x-1,y), z(x,y), z(x+1,y), z(x,y-1) and z(x+1,y-1), contribute to both the eigenvalue in Eq. 
(14) and F′(x,y) in Eq. (15) and that they are distributed fairly symmetric around (x,y). 
This property may make us expect to reconstruct similar shapes in the forward and 
backward directions on the coordinates. Third, it is seen that we still need G and F in 
the entire area of 1≤x≤N and 1≤y≤N to get G′ and F′. Since z(x,y) are not estimated 
along the two boundary lines, (x,N) and (y,N), where 1≤x≤N and 1≤y≤N, we need to 
assume values of p and q along these two lines in addition to those along the other two 
boundary lines, (x,1) and (y,1), where 1≤x≤N and 1≤y≤N. We use the two assumptions 
depending on whether or not the image varies along the boundaries. On one hand, for 
the case where the image varies, p=0 is assumed along the vertical boundary line and 
q=0 along the horizontal one. On the other hand, for the case where the image does not 
vary, we assume that p = -z(1,y) or z(N-1,y) along the vertical boundary line and q = 
-z(x,1) or z(x,N-1) along the horizontal line in correspondence to z(0) = 0. 

 
3 Rotation of Coordinates 
 
In [13] we proposed to estimate the shape in the forward and backward directions to 
reduce the distortions. This can be extended to rotating the coordinates by an arbitrary 
angle to maximize the quality of shape. To explain it, first, let us rewrite Eq. (13) as 
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When we use z(0) = 0, the function h for n = 1 may approximately be given by 
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where A(0) takes a maximum at the center of the coordinates and gradually decreases 
towards the borders, and it varies depending on σ and τ. pf

(0), normalized to unity, has 
very similar patterns for a variety of (x,y) values, so that it may be regarded to be a 
space-invariant function. pf

(0) changes with respect to τ but not so with respect to σ, as 
far as numerical evaluation is concerned. For n > 1 the function h varies depending on 
(x,y) so that it is not space-invariant any more, as will be shown, but its basic patterns 
are still persistent to a varying degree depending on n, (x,y) and the image. It may be 
seen from Eqs. (16) and (17) that pf

(0) represents the characteristics of the reconstruction 
system. In view of this, the function may be desired, in general, to be isotropic and to be 
a monotonically decreasing function with a peak at x′ = x and y′ = y, where the 
significant area of the function results in an effective averaging area for F’(x,y).  
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Fig. 1 (a) Patterns of pf
(0) in Eq. (17) for (x,y) = (6,42), (12,42), …, (42,42), …, (42,6) 

from the top left to bottom right, where τ = 45, and (b) those for τ = 0, 11.25, 22.5, …, 
168.75 from the top left to bottom right, where (x,y) = (25,25). 
 

Some patterns of pf
(0) are shown as a function of (x,y) in Fig. 1(a) for τ = 45 degrees, 

and binary patterns drawn in white for the parts of more than 50% magnitude of the 
maximum are given as a function of τ in Fig. 1(b) for (x,y) = (N/2, N/2), N = 50. In Fig. 
1(b), where τ ranges from 0 to 168.75 degrees, the pattern for τ + 180 is the same as that 
for τ. It is seen from Fig. 1(a) that the patterns are similar to each other, and it is seen 
from Fig. 1(b) that the pattern for τ ≈ 45 is the best among them. Hence, it may be 
reasonable to rotate the coordinates so that the lighting direction is equivalently τ ≈ 45. 
Otherwise, typically the line pattern may generate stripe-like shape noise, as will be 
shown.  

When the coordinates are rotated by an angle other then a multiple of 90 degrees, an 
image value has to be assumed where the image does not exist. In our case it is given so 
that the resulting shape is flat. The pf(x,y;τ) pattern for the case of τ ≈ 45 implies that 
possible shape distortions may also accumulate along the direction. So when two shapes 
reconstructed in the opposite directions are averaged, we may expect to use, in general, 
the weights that vary along this direction. 

The overall procedure is as follows:  
(i) When S=(σ, τ) has a tilt angle outside the desired range, say, 30<τ<60, we rotate the 
coordinates by τ’ so that it holds that 30<τ+τ’<60.  
(ii) Two shapes are reconstructed in two opposite directions on the rotated coordinates.  
(iii) Average gradients in x and y are evaluated for the shapes, to determine in which 
direction the weights on the two shapes linearly vary in the averaging. 
(iv) The two shapes are averaged with the weights and the image is mapped pixel by 
pixel on the shape. 
 



4 Computer Experiments 
 
Four synthetic images and one real image were used. The four shapes and their 
synthetic images for S=(5,5,7) or (5,5,2) are shown in Fig. 2; a semi-sphere, the Mozart 
sculpture [16], a ring, and a computer mouse. In Fig. 2(c) the cross-sectional surface 
profiles of the center part and the ring are given by half the periods of the cosine 
functions. In Fig. 2(d) the shape of the mouse was measured using a laser range scanner. 
As you can observe, the measured shape has some structural noise and, as a result, the 
shading image is noisy. All of them have the size 50x50 elements. In the estimation the 
iteration was basically stopped when the gradients of the shape being reconstructed took 
jumps, to obtain smooth shapes in a shorter time. Since, the shape tends to be jagged 
after a certain number of iterations, although the shape remains roughly the same in 
many cases. In some cases, however, the shape is significantly distorted without the 
stopping. 

First in Fig. 3, reconstructed shapes are compared between the new method and the 
previous one for two of the objects. It is seen that the difference in shape is significant 
between the two estimates for the previous method, while the two shapes are relatively 
similar for the new method. Averaging them may reduce the distortions to a great degree, 
but it would be much more desirable to get as accurate shapes as possible for each of the 
estimates. The corresponding patterns of h(n-1) to the case of the semi-sphere in Fig. 3(a) 
are shown in Fig. 4. It is seen that they are different from those in Fig. 1, reflecting the 
image, but still the basic patterns in Fig. 1 are persistent. 

Shapes obtained with the new algorithm for the four shading images in Fig. 2 are 
given in Fig. 5, where they are averaged ones and the images are mapped pixel by pixel 
on the shapes as textures. In the case of the semi-sphere, where averaging was made 
using the weights that vary linearly along the line y=x, the gradients of the estimated 
shape are not large enough, judging from the part meeting the flat background. In the 
case of the Mozart, where there is almost no difference between the averaged shapes 
obtained with the optimal weights that linearly vary in x and with the weights that vary 
linearly along y=x, the part of the chest is lower than the original shape. This may be 
correlated to the property of the h pattern; that is, its magnitude decreases towards the 
boundaries. In the case of the ring, where the optimal weights vary linearly along y=x, 
the reconstructed ring is lower in height than the center part due to the same property of 
the h and a limited spatial resolution that may also have to do with the h pattern. In the 
case of the mouse, the shape obtained with the optimal weights that linearly vary in y is 
very close to the one obtained with the weights that linearly vary along y=x. We can 
observe that the shape is relatively good, although it has some minor distortions. 

Figure 6 shows the effects of rotating the coordinates and averaging the two estimates 
on improving the shape for a complex real image. The lighting direction for the real 
image in Fig. 6(a) was estimated to have σ=58 and τ=5 in degree using the method 
presented in [6]. Then, two shapes were reconstructed, and they were averaged with the 
optimal weights that linearly vary in y. The result in Fig. 6(b) shows that stripe-like 
noise is noticeable as anticipated. Next, the coordinates were rotated clockwise by 40 
degrees to get the shape in Fig. 6(c), where the optimal weights on the rotated 
coordinates vary linearly in x, although the shape obtained with the weights that vary 
along y=x correspondingly to the h pattern is very close to the one in Fig. 6(c). The 
image is mapped pixel-by-pixel on the shape in Fig. 6(d) as texture to give a 
three-dimensional representation of the shape. Two shapes obtained before the 



averaging with and without mapping of the image are also shown in Fig. 6(e)-(h). As 
clearly seen from the comparison of Fig. 6(f) and (h) with (d), the averaging is very 
significant in the new algorithm, too, when it comes to a complex real image.  

 
5 Conclusions 
 
We presented a robust iterative shape-from-shading algorithm, which is easy to 
implement, more accurate, and applicable to a wider range of objects and illuminating 
conditions. We also showed the effects of rotating the coordinates on improving the 
shape. Computer experiments showed the usefulness of the new algorithm. Shapes 
obtainable with the new algorithm, however, still appear to lack accuracy, so more 
sophisticated an algorithm is now under study. 
 
References 
 
[1] B.K.P. Horn, Obtaining Shape from Shading Information, in The Psychology of 

Computer Vision P.H.Winston (ed.) (New York: McGraw Hill, 1975), 115-155. 
[2] B.K.P. Horn and M.J. Brooks, Shape from Shading (Cambridge, MA: MIT Press, 

1989). 
[3] R. Zhang, P. Tsai, J.E. Cryer, and M. Shah, Shape from Shading: A Survey, IEEE 

Trans. PAMI, 21(8), 1999, 690-705. 
[4] P. Pentland, Local shading analysis, IEEE Trans. PAMI, 6(2), 1984, 170-187. 
[5] C.H. Lee and A. Rosenfeld, Improved Methods of estimating Shape from Shading 

Using the Light Source Coordinate System, Artificial Intelligence, 26(1), 1985, 
125-143. 

[6] Q. Zheng and R. Chellappa, Estimation of Illuminant Direction, Albedo, and Shape 
from Shading, IEEE Trans. PAMI, 13(7), 1991, 680-702. 

[7] P. L. Worthington and E. R. Hancock, New Constraints on Data-Closeness and 
Needle Map Consistency for Shape-from- Shading, IEEE Trans. PAMI, 21(12), 
1999, 1250-1267. 

[8] P. S. Tsai and M. Shah, Shape from Shading Using Linear Approximation, J. 
Imaging and Vision Computing, 12(8), 1994, 487-498. 

[9] A. Pentland, Shape Information from Shading: A Theory about Human Perception, 
Proc. Int’l Conf. Computer Vision, 1988, 404-413. 

[10] M. Bichsel and A. Pentland, A Simple Algorithm for Shape from Shading, Proc. 
CVPR, 1992, 459-465. 

[11] R. Kimmel and A.M. Bruckstein, Tracking Level Sets by Level Sets: A Method for 
Solving Shape from Shading Problem, CVIU, 62(1), 1995, 47-58. 

[12] D.Samaras and D.Metaxas, Incorporating Illumination Constraints in Deformable 
Models, CVPR, 1998, 322-329. 

[13] O. Ikeda, A Novel Shape-From-Shading Algorithm Using Jacobi Iterative Method 
and Bi-Directional Estimation, Proc. IASTED CGIM, 2002, 56-61. 

[14] B.K.P. Horn and M.J. Brooks, The Variational Approach to Shape from Shading, 
CVGIP, 33(2), 1986, 174-208. 

[15] R.J. Woodham, Photometric Method for Determining Surface Orientation from 
Multiple Images, in Shape from Shading(Cambridge, MA: MIT Press, 1989). 

[16] eustis.cs.ucf.edu (132.170.108.42) 



 
 

  

    
(a) semi-sphere 

(5,5,7) 
(b) Mozart  

(5,5,7) 
(c) ring  
(5,5,2) 

(d) mouse  
(5,5,2) 

 

Fig. 2 Four shapes and their synthetic shading images with the values of S = (Sx, Sy, Sz). 
 
 

 

 
(a) Eq. (13), forward (b) Eq. (13), backward (c) Eq. (8), forward (d) Eq. (8), backward 

 

Fig. 3 Comparison of shapes reconstructed with the new algorithm using Eq. (13) and 
the previous one using Eq. (8) for two images, where forward and backward mean the 
directions on the coordinates in the estimation. 
 

 



 
 

Fig. 4 Normalized patterns of h(n-1) in Eq. (16) for (x,y) = (6,42), (12,42), …, (42,42), …, 
(42,6) from the top left to bottom right for the semi-sphere image after a number of 
iterations for which we obtain the shape on the top in Fig. 3(a).  
 
 

  

  

  
 

Fig. 5 Reconstructed and averaged shapes (top), front-views of their texture-mapped 
shapes (medium) and their back-views (bottom). In the case of the ring, the view on the 
medium row is from the right. 
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Fig. 6 Effects of rotating the coordinates on improving the shape: (a) image; (b) average 
of the two reconstructed shapes; (c) average of the two reconstructed shapes after 
rotating the coordinates clockwise by 40 degrees; (d) the same shape in (c) with the 
image mapped pixel by pixel; (e) shape reconstructed in the forward direction after 
rotating the coordinates by 40 degrees; (f) the same shape as in (e) with the image 
mapped pixel by pixel; (g) shape reconstructed in the backward direction after rotating 
the coordinates by 40 degrees; and (h) the same shape as in (g) with the image mapped 
pixel by pixel. 
 


