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Abstract

We describe a generative model of ‘talking head’ facial behaviour, in-
tended for use in both video synthesis and model-based interpretation. The
model is learnt, without supervision, from talking head video, parameterised
by tracking with an Active Appearance Model (AAM). We present a inte-
grated probabilistic framework for capturing both the short-term visual dy-
namics and longer-term behavioural structure. We demonstrate that the ap-
proach leads to a compact model, capable of generating realistic and rela-
tively subtle talking head behaviour in real time. The results of a forced-
choice psychophysical experiment show that the quality of the generated se-
quences is significantly better than that obtained using alternative approaches,
and is indistinguishable from that of the original training sequence.

1 Introduction

This paper addresses the problem of modelling the facial behaviour of individuals en-
gaged in conversation. The aim is to develop a generative model capable of synthesising
realistic, completely novel video sequences of conversational behaviour. The resulting
model is of immediate application in video synthesis, but our long-term interest is in
model-based interpretation and human-computer interaction — extending into the tempo-
ral domain the ‘interpretation by synthesis’ strategy that has been applied successfully to
static face images [7, 3].

In order to capture a broad range of often subtle behaviours, we choose to learn a
model from very long (around one hour) video sequences of individuals in conversation.
To be practical, this requires that we adopt an unsupervised (or very nearly unsupervised)
approach. Our work builds on the Active Appearance Model (AAM) method of Cootes
et al. [3], and on several previously published techniques for modelling behaviour. We
present a new approach to combining short-term modelling of appearance dynamics, with
longer-term modelling of behavioural structure, achieving realistic synthesis of subtle and
highly variable facial behaviour.

2 Previous Work

There is a significant body of literature on modelling visual behaviour. Though relatively
little of this applies specifically to facial behaviour, the methodology is relevant. Common
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to all approaches is the idea of generating a sequence of states through some configuration
space.

Building on experience from speech recognition, Hidden Markov Models (HMMs)
have been applied extensively. Yamoto et al. [13] were amongst the first to propose the
approach. Starner and Pentland [12] used Gaussian HMMs to recognise American Sign
Language, and many others have followed. Although such methods show promise for the
recognition of simple gestures, the HMMs they use are not very satisfactory generative
models: they make poor predictions because they use a very limited state history and draw
from each state distribution independently.

Brand [1] addressed the state sampling issue by modelling both configuration vari-
ables and their derivatives, allowing the estimation of a maximum likelihood path through
configuration space. As with conventional HMM methods, this approach does not, how-
ever, use sufficient history to capture configuration dynamics. Johnson and Hogg [6] ex-
tended this approach (building also on work by Jebara and Pentland [5]), sampling each
step along the trajectory in configuration space from a distribution conditioned on its re-
cent history. They showed quite good results in a simple problem of modelling the paths
of pedestrians in fixed environment, but the approach does not capture the full structure
of trajectories in behaviour space, and produces relatively poor results in our application.

Other authors have described auto-regressive models, that aim, specifically, to capture
short-term dynamics. Fitzgibbon [4] showed that temporally coherent behaviour could
be generated using an ARMA model. Campbell et al. [2] extended the autoregressive
approach to deal with non-stationary behaviour, and applied the approach (with limited
success) to a talking head. The problem with these methods is that, although they re-
produce appropriate short-term dynamics, they do not capture longer-term behavioural
structure.

More recently, exemplar-based approaches have become popular. Schodl et al. [10]
find a set of prototype (key) frames from an image sequence and construct new sequences
by transitioning between similar prototypes. Sidenbladh et al. [11] extend this idea, by
creating prototypes that are short sequences of frames. To select the next frame, a set
of prototypes are found whose histories are similar to the current history; one of these is
selected, and its final frame is used as the next frame. These approaches produce quite
convincing results, but do not have the ability to generalise significantly.

Our approach is related to that of [5] and [6], but we capture more of the structure in
behaviour space by using an HMM. This requires the sampling approach to be extended
to condition state transitions, as well as the sampled behaviour, on the current value of the
behaviour vector.

3 Overview of Our Approach

Our aim is to model the distribution of facial behaviours seen in a long training sequence,
capturing both short-term dynamics and longer-term behavioural structure. We use an
Active Appearance Model (AAM) to parameterise talking-head image sequences, and
build behaviour models in the space of this parameterisation. Novel video sequences are
reconstructed from a stream of Appearance Model parameters generated by the behaviour
model.

We capture short-term dynamics by modelling sequences of parameter vectors, which



we call pathlets. Each pathlet is a point in a high dimensional space. We model the
behavioural structure of this space using a Gaussian HMM. It is clear that successive
pathlets cannot be chosen independently — otherwise temporal coherence would be lost
at the joins. We show how the choice of each pathlet can be conditioned on its predeces-
sor, delivering consistent short-term dynamics, and properly integrating short-term and
longer-term behaviour.

4 AAM Parameterisation

To reduce the dimensionality of the learning problem, we model behaviour in the Appear-
ance Space of an Active Appearance Model (AAM). An Appearance Model represents
both the shape and texture variability seen in a training set. The training set consists of
images, with corresponding landmark points marked on each example. The configuration
of land-mark points for each example can be represented by a vector x, and the texture —
warped to the mean shape and raster-sampled — by a vector g. The appearance model has
a vector of appearance parameters, ¢, that controls the shape and texture according to:

X =X+ QgC.
g:§+QgC~ @

where X is the mean shape, g is the mean texture and Qs,Q, are matrices, derived from
the training set, describing modes of shape and texture variation respectively. A new face
image can be synthesised for a given parameter vector, ¢, by generating a texture image
from the vector g and warping it using the control points described by x. Typically, good
quality face images with a wide range of poses and expressions can be synthesised using
a model with an appearance vector ¢ containing around 100 appearance parameters.

An appearance model can be matched to a new image, given an initial approximation
to the position, using the Active Appearance Model (AAM) algorithm. This uses a fast
linear update scheme to modify the model parameters, minimising the difference between
the synthesized image and target image. If an AAM is matched to each image in a video
sequence of a talking head, the facial behaviour can be described by a sequence of ¢
vectors, one for each frame.

5 Modelling Behaviour
5.1 Pathletsand Pathlet Space

To capture short-term behaviour, we construct pathlets from sequences of appearance pa-
rameters. The simplest scheme would be to take the values of ¢ for successive frames, but
that would result in many redundant pathlets, where there was no change in the appear-
ance parameters between frames. Instead we choose to sample at points spaced equally in
appearance space. In the experiments described below, we fitted a cubic spline to the se-
quence of ¢ values and sampled at points equally spaced along this continuous trajectory,
such that the average time between samples was equal to the interval between frames in
the original sequence. Each of these points was parameterised by

Xj = [Ci , ati] (2)



where t; is the logarithm of the time taken to travel from ¢; to ¢ 1 and a is a constant,
chosen to make the variance of ¢; and t; comparable over a long sequence. A complete
video sequence X can be represented by a series of non-overlapping pathlets of length I:

X= [X17X2a cee 7XNpoints]T = M’Ivlgv ce 7l-l|\-lpa1hs]-r (3)
where An = [Xi,Xi+1,...,Xi],andn=1+(i —1)/I.

It is useful to think of pathlets as shapes in Appearance space. Each of these shapes
can be represented as a point in an dim(x)l dimensional space, where dim(x) is the di-
mensionality of x. It is clear that there will tend to be strong correlations between the
values of x; within a pathlet. To exploit this and reduce the dimensionality of the space,
we perform Principal Component Analysis (PCA) on the set of pathlets from a training
sequence. It is in this PCA space that we build our behaviour model; to simplify notation,
we shall assume, from this point on, that A; is a vector in PCA space and we will refer
to the PCA space as pathlet space. For reasons that we shall see shortly, we also define
long-pathlets, obtained by concatenating successive pathlets:

An+1 = MIJ}H]T (4)

52 AnHMM in Pathlet Space

Pathlets provide a representation capable of capturing the short-term dynamics of visual
behaviour. We now consider the problem of capturing the longer-term structure of be-
haviour. Our approach is based on constructing a Hidden Markov Model (HMM) in path-
let space. In this section we outline the standard approach to constructing an HMM and
using it to generate novel sequences; we also explain the limitations of this method. In the
following section we present a modified approach that overcomes these problems. We use
a Gaussian HMM, which can be thought of simply as a Gaussian mixture model with ad-
ditional sequencing information. We provide here a brief summary of HMM construction
and use. For a more detailed description see Rabiner [9].

Our starting point in constructing an HMM is a sequence of pathlets 21,42, ..., AN,
obtained from a long training sequence of talking head video. The Baum-Welch algorithm
(a specialised case of the EM algorithm) can be used to obtain a HMM that is characterised

by:
1. A set of states {sc}. We refer to the n'" state in a sequence of states as s,

2. A Gaussian distribution N[A |, K] in pathlet space for each state s, with mean
Uy and covariance K.

3. Akx Kk state transition matrix A = {a; «}, where a; x = P(s¢|s;j). Typically A is not
ergodic, hence many a;j x = 0.

4. The initial state distribution IT = {r; }, where ; = P(q1 = 5j).

Such an HMM can be used as a stochastic generative model, creating behaviours
that are consistent with those seen during training. Following the standard approach we
proceed as follows:



1. Choose an initial state sq,,n = 1 by sampling from the set of states {s.} with prob-
abilities my.

2. Sample a pathlet An from N[ |, Kgp].

3. Choose a transition to a new state g1 by sampling from the set of states {sc} with
probabilities ag, k.

4. Repeat from 2.

Each sample of A, in step 2 provides | time points in appearance space, which can be
concatenated to produce an evolving trajectory. The mixture of Gaussians, {N[A |t Kq,]},
in pathlet space captures the distribution of legal short-term behaviour, whilst the con-
strained transitions between states capture the longer-term structure of behaviour.

This scheme does not, however, lead to satisfactory results in our application (see
experimental results in section 6.3). There are two closely related problems: first, in step
2, we should not pick a value for A, independently of the previous pathlet, because this
does not guarantee that successive pathlets will join continuously; second, in step 3, we
should not pick state g1 independently of A, because the probability of a transition to
a given state depends not only on the current state, but also the current pathlet. The first
point is reasonably obvious. The second point is illustrated in figure 1(a), which shows
the distribution of training pathlets for one state, plotted in the first three dimensions
of pathlet space. Each point is labelled to show its destination state; there is a clear
correlation between position within the distribution and destination state.

5.3 A Joint Pathlet HMM

In this section we introduce a new method — the Joint Pathlet HMM (JPHMM) — that deals
with the problems we identified above with the simple pathlet HMM scheme outlined.

In order to capture the conditional relationships between successive pathlets, we start
by building an HMM in long pathlet space, rather than pathlet space. The method is
exactly as described above, except that the starting point is a sequence of long pathlets
A2, Az, ANy (A1 is not defined). Otherwise all notation remains the same. Note that
these long pathlets overlap by one standard pathlet, so each step introduces just one new
pathlet.

To generate legal behaviour we need to sample from p(Ani1]An,dn), the conditional
distribution of An,1, given the current state Sy, and current pathlet A,. This conditional
distribution can be expressed as a weighted sum of the corresponding conditional distri-
butions associated with each of the states:

P(Ans1|An,On) = ZP(Qn—H =K[An,0n)P(Ant1]An,Ons1 = K) )
k

The procedure for sampling from this distribution is to select a state s, , from all possible
states {s¢} with probabilities P(gnt+1 = k|An, 0n), then to sample from p(Ani1|An, Ony1 =
k).

Using Bayes Theorem, the first of these terms can be expanded as follows:

P(On+1 = K|an) P(An|0nr1 =K, 0n)
P(Anl0hn)

P(Oht1 =K|An,0n) = (6)



Since the denominator is independent of g.. 1, the selection between the different possi-
bilities for g,,1 can be made by weighting the decision using the numerator alone. The
first term in the numerator is simply the appropriate entry in the transition matrix A, ob-
tained during construction of the HMM. The second term can be learnt from the training
set, once the HMM has been constructed. To do this, we use the HMM to find the most
probable sequence of states giving rise to the observed data, using the Viterbi algorithm
[9]. For each state transition occurring with non-zero probability, we find a Gaussian
approximation to p(An|Qn+1,0n) from the training data.

Once we have chosen state gn.1 using equation 6, we need to sample from
P(An+1|An,0Ont1), the distribution of pathlets for state gn;1, conditioned on An. This is
illustrated in Figure 1(b). To sample from p(An+1|An,Ont1) We use a similar sampling
scheme to that of Johnson and Hogg [6]. From our HMM training we have

p(AnJrl |qn+l) =N [A|.uqn+1a KQn+1] (7)

where Any1 = [, An]T. We can decompose Ug,., and K, into the components that

correspond to Ap and Api1:

‘LLQnJrl = [an an+1] . (8)
k k!
KQn+l — Gn.0n On+1,0n | (9)

an+17CIn an+l-,Qn+1

The conditional density we require is also Gaussian, N[Muqmlqn, Kgn.1lgn] [8], where:

_ -1
My, q)on = Man + kCIn+17anqn,qn (AQn - mqn)- (10)

K —k —k koty k& (11)
On+1/0n On+1,0n+1 On+150n ™0, 0n “Ong1,0n41°

In summary, we can generate novel behaviour sequences using the JPHMM as follows:

1. Choose an initial state s;,, n =1 by sampling from the set of states {s.} with
probabilities 7x. Sample a long pathlet An from N[A|pg, ,Kg, .

2. Choose a transition to a new state gn+1 by sampling from the set of states {s} with
probabilities P(qn+1 = k|An,dn) given by Equation 6.

3. Sample from p(An+1|An, Ont1) USING equations 7, 8, 9, 10 and 11.
4. Repeat from 2.

6 Experiments

6.1 Training Data

We recorded a video sequence, lasting approximately 1 hour, of one of two people in-
volved in a conversation. We then used a bootstrapping method to achieve reliable track-
ing of the whole sequence. Several frames from the sequence were marked up initially
with corresponding points and used to train an Active Appearance Model (AAM). The
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Figure 1: (a) Scatter plot of training data, in pathlet space, for one state. Points are labelled
according to destination state using symbols o, +, 7. (b) Finding the PDF of pathlet 1,.1
given a previous pathlet in the sequence.

trained AAM was then used to match to each frame in the sequence, using the result
from the previous frame to initialise the search. The mean square matching errors were
then analysed to determine on which frames the AAM failed. The 10 worst frames were
marked up and included in the set used to train the AAM. The newly trained AAM was
again used to track the face in the video sequence. This process was iterated until the
worst frames achieved acceptable tracking performance. Figure 2(a) shows a typical im-
age from the recorded sequence. Figure 2(b) shows the points used to mark up the images
to train the AAM.

@ (b) (©)

Figure 2: (a) A sample image taken directly from the video used to train the model. (b)
An image showing the points used to train the AAM. (c) A reconstruction of a marked up
image from its parameter values.

6.2 Model Building

88,000 frames of the conversation video were tracked and parameterised using the boot-
strapped AAM as described above. A 53 dimensional AAM space was used to model the
variation in the video sequence, retaining 98% of the total model variance. Figure 2(c)



shows a frame reconstructed from its parameter values. Pathlets were extracted as de-
scribed in Section 5.1. To make maximum use of the training data, | sequences of pathlets
were used, starting from each of the first | points in the training sequence.

To investigate the effect of changing pathlet length, we compared the distribution
of variances in the PCA components of the pathlet space. Figure 3(a) shows the PCA
variance spectra for pathlet lengths of 1,2,5,10,15 and 20. As would be expected for a
structured sequence, the first few dimensions of the pathlet space capture most of the
pathlet variance.

80 7 —— 1 frame per pathlet 1000) —— Real conversation
%lotal | 4 | e 2 frames per pathlet --- Random data
Variance 70| 5 frames per pathlet
j PCA
- 10 frames per pathlet Space
—— 15 frames per pathlet Dimensionality
50 & --v-- 20 frames per pathlet 99%)

)
N° Dimensions Pathlet Length

@ (b)

Figure 3: (a) Total variance retained as a function of number of PCA dimensions for
different lengths of pathlet; (b) number of dimensions required to retain 99% of the total
variance as a function of pathlet length.

Figure 3(b) shows the number of dimensions in pathlet PCA space required to capture
99% of the total pathlet variance, as a function of pathlet length. To highlight the effective-
ness of using pathlets to encode short-term dependencies we have included the equivalent
results for pathlets constructed from random data. The difference in the gradients of the
two lines shows clearly that pathlets capture useful local structure.

Based on these results, we chose pathlets of length 10 (typically half a second) as a
good compromise - capturing useful dynamics whilst avoiding creating a space with so
many dimensions that training becomes impractical for the size of training set available.
We retained 99% of the total pathlet variance, producing a pathlet PCA space with only
30 dimensions. An HMM with 80 hidden states was trained in the long-pathlet space as
described above.

6.3 Moded Performance

We used the model as described in Section 5 to generate new sequences of talking head
behaviour, and found that the results were reasonably convincing. To assess the perfor-
mance quantitatively, we performed a forced-choice psychophysical experiment, in which
subjects were presented with pairs of video sequences of conversational behaviour, and
were asked to choose the most realistic. We used this approach to compare sequences



Comparison Total Comparisons % JPHMM 212 Significance
Original Sequences 218 54 1.33 0.75
Appearance HMM 188 99 178.13 1.00
Pathlet HMM 209 91 141.55 1.00
Smoothed Pathlet HMM 205 84 92.90 1.00

Table 1: Results of psychophysical experiment comparing the ability of subjects to dis-
tinguish between the realism of JPHMM results, the original training sequence, and the
output of 3 other modelling methods.

generated using our JPHMM method with examples of the original training data and with
sequences generated using three simpler modelling methods.

The forced choice experiment was performed by 20 subjects, each making 40 compar-
isons. For each comparison both sequences were played simultaneously for 10 seconds.
The subject then had 5 seconds to choose the most realistic sequence using a point and
click interface. Each subject was given written instructions and each session was struc-
tured as follows: 3 practice comparisons, 2 minute break for questions, first batch of 20
recorded comparisons, 2 minute rest, second batch of 20 recorded comparisons. A pool
of 46 examples of each type of sequence was used, and pairs suitable for one of the four
types of comparison considered were selected randomly, with equal probability, for each
subject. The total number of comparisons was 800 giving approximately 200 trials for
each type of comparison. The four types of comparison used were: JPHMM vs Origi-
nal Sequence, JPHMM vs Appearance HMM, JPHMM vs Pathlet HMM and JPHMM vs
Smoothed Pathlet HMM.

The Original Sequences were video sequences, resynthesised from the parameterised
training data and thus represented the most realistic possible results. The Appearance
HMM was an HMM with 300 states, built directly using the parameterised training se-
quence X = [X1,Xa, ... ,proimS]T. Since this involved no history, there was no mechanism
for capturing short-term behavioural dynamics, so relatively poor performance was ex-
pected. The simple Pathlet HMM was built as described in section 5.2, using 200 states.
Although the short-term dynamics were expected to be captured, the problems with path-
let continuity, outlined earlier, were expected to lead to overall poor performance. The
Smoothed Pathlet HMM was identical to the previous case, except that a spline was con-
structed in appearance space and the sequence was synthesised by sampling points along
this smooth trajectory. This was included to test whether a relatively simple modification
of the simple pathlet method could give acceptable results.

The results of the experiment are summarised in Table 1. A chi-squared test was used
to test the hypothesis that subjects could not distinguish between the pairs of sequences
used in each type of comparison. The results show that our new method performs ex-
tremely well, and is much better than any of the alternatives investigated. Subjects were
unable to distinguish between the JPHMM sequences and the Original Sequences (results
favour the JPHMM, but are only significant at the 75% level). For all other methods,
Subjects found the JPHMM sequences more realistic than those generated using all the
other methods, with a very high level of statistical significance. Of the other methods,
the Smoothed Pathlet HMM method performed best (but a lot worse than the JPHMM
method), the simple Pathlet HMM next best, and the Apparance HMM worst.



7 Conclusion and Discussion

We have demonstrated the ability to model subtle facial behaviour using a modified HMM
that uses a principled probabilistic framework to learn both short-term visual dynamics
and longer-term behavioural structure. The results of psychophysical experiments show
that sequences generated by the model are indistinguishable in realism from the original
training sequences. Although the AAM parameterisation of the training sequence was
tuned to a single individual, we do not believe this is a limitation. We have already
demonstrated the ability to track reliably with an AAM - our intention here was to ensure
high-quality parameterisation, so that the modelling results would run no risk of being
confounded by poor parameterisation. As we indicated in the introduction, this is the first
phase of a line of research that is intended to lead to interpretation by synthesis and subtle
human-computer interaction. The initial results are promising and may be of value in
their own right for image synthesis.
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