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Abstract

This paper presents a fully unsupervised texture segmentation algorithm by
using a modified discrete wavelet frames decomposition and a mean shift
algorithm. By fully unsupervised, we mean the algorithm does not require
any knowledge of the type of texture present nor the number of textures in
the image to be segmented. The basic idea of the proposed method is to
use the modified discrete wavelet frames to extract useful information from
the image. Then, starting from the lowest level, the mean shift algorithm is
used together with the fuzzy c-means clustering to divide the data into an
appropriate number of clusters. The data clustering process is then refined at
every level by taking into account the data at that particular level. The final
crispy segmentation is obtained at the root level. This approach is applied
to segment a variety of composite texture images into homogeneous texture
areas and very good segmentation results are reported.

1 Introduction
Texture analysis is not a new topic in the vision community, as it has been investigated in
its own right for the last thirty years by researchers in psychophysics and more recently
computer vision. In the field of computer vision, texture plays an important role in low
level image analysis and understanding. Its potential application range has been shown in
various areas such as analysis of remote sensing images, industrial monitoring of product
quality, medical imaging, and recently, content-based image and video retrieval. There is
no formal or unique definition of texture, making texture analysis a difficult and challeng-
ing problem.

Texture segmentation deals with identification of regions where distinct textures ex-
ist, so that further analysis can be done on the respective texture regions alone. There are
already a large number of supervised [13, 15] and unsupervised [10, 11] texture segmen-
tation algorithms in the literature. The difference between supervised and unsupervised
segmentation is that supervised segmentation assumes prior knowledge on the type of tex-
tures present in the image. While the unsupervised techniques are very useful in a lot of
applications, most still require the number of textures to be given a priori. The particular
application area in which we are working is content-based retrieval of art and museum
artefact images, where the segmentation is to be performed on several thousand images.
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It is therefore inefficient to expect the number of textures to be manually provided for all
the images. An automatic texture detection and segmentation algorithm, which we termed
fully unsupervised segmentation, is therefore needed to suit this kind of application.

In this paper, a novel texture segmentation method that is fully unsupervised (i.e.
without any a priori knowledge on either the type of textures or the number of textures
in the image) is presented. The method uses a modified discrete wavelet frames (DWF)
decomposition to extract important features from an image before a mean shift algorithm
is used together with a fuzzy c-means (FCM) clustering to cluster or segment the image
into different texture regions. The proposed algorithm has the advantage of high accuracy
while maintaining low computational load. We will also show the advantage of using the
modified DWF over the standard DWF and the wavelet transform, and demonstrate how
using the mean shift together with the FCM helps in speeding up the fuzzy clustering
process. The rest of the paper is organized as follows: in the next section, related work
concerning texture segmentation is briefly reviewed. This is followed by a brief review
of the discrete wavelet frames in section 3. In section 4 we explain the algorithm for the
mean shift. The implementation of the segmentation method is presented in section 5. In
section 6 results obtained using our technique on a variety of image data are presented.
We conclude the paper in section 7.

2 Related Works
There are already a large number of texture segmentation algorithms in the literature.
Texture segmentation usually involves the combination of texture feature extraction tech-
niques with a suitable segmentation algorithm. Among the most popular feature extrac-
tion techniques used for texture segmentation are the Gabor filters, Markov random fields,
Laws’ texture features and wavelets, while split-and-merge, region growing and cluster-
ing are the most commonly used segmentation algorithms. Due to its multiresolution
property, wavelets have provided a new dimension to the field of computer vision, and
many studies have been conducted utilizing wavelets in texture segmentation. Promising
results have been reported in [5, 14, 16], among others.

There are also a few papers comparing the performance of several segmentation tech-
niques. Du Buf et al [2] compared seven different texture feature extraction methods
(GLCM, fractal, Michelle’s, Knutsson’s, Laws’, Unser’s, curvilinear integration), while
Chang et al [3] experimented with three feature extraction methods (GLCM, Laws’, Ga-
bor)and three segmentation algorithms (fuzzy clustering, square-error clustering, split-
and-merge). However as mentioned before, most of the texture segmentation algorithms
currently available still require the number of textures to be provided. Only a few fully
unsupervised algorithms were reported in the literature. One example of an automatic
segmentation algorithm is proposed by Porter et al [14], which is based on wavelets and
within-cluster distance calculation. There is also an attempt to determine the number of
textures in an image [9], so that it could be combined with any unsupervised segmentation
algorithm. But this method is rather inefficient as it requires two completely different sets
of algorithms, one to detect the number of textures present and another to segment them.
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Figure 1: (a) An image and its, (b) wavelet transform, (c) discrete wavelet frames

3 Discrete Wavelet Frames
The wavelet transform [12] analyses a signal based on its content in different frequency
ranges. Therefore it is very useful in analysing repetitive patterns such as texture. The
transform uses a family of wavelet functions and its associated scaling function to decom-
pose the original image into different channels, namely the low-low, low-high, high-low
and high-high (LL, LH, HL, HH respectively) channels. The decomposition process can
be recursively applied to the low frequency channel (LL) to generate decomposition at
the next level. The quadrature mirror filters are used to implement the wavelet transform
by low- and high-pass filtering the original image followed by a sub-sampling process,
resulting in an output with the same size as the input. Figure 1(b) shows a 2-level wavelet
transform decomposition of an image.

Discrete wavelet frames (DWF) [16], or an over-complete wavelet transform, is nearly
identical to the standard wavelet transform, except that one up-samples the filters, rather
than down-samples the image. While the frame representation is over-complete, and
computationally more intensive than the wavelet transform, it holds the advantage of be-
ing translationally invariant. Given an image, the DWF decomposes it using the same
method as the wavelet transform, but without the sub-sampling process. This results in
four filtered images with the same size as the input image. The decomposition is then
continued in the LL channels only as in the wavelet transform, but since the image is
not sub-sampled, the filter has to be up-sampled by inserting zeros in between its coef-
ficients. Figure 1 (b) and (c) shows the difference between the discrete wavelet frames
decomposition and the standard wavelet transform.

4 Mean Shift Algorithm
Mean shift clustering [6, 7, 8] is a clustering technique which finds possible cluster centres
based on the density gradient of data, allowing unsupervised clustering to be performed.
The idea of the mean shift is to shift sampled points in the feature space towards the
mean of points in their neighbourhood until they converge to particular positions. The
convergence points are subsequently analysed to find possible cluster centres. A point
is shifted to a new location based on the mean of all points within a radius h from the
point itself. Theoretically the point will be shifted towards a local density maximum of
the data set. An example of mean shift convergence of a point is shown in Figure 2, for
a two-dimensional case. For a step-by-step implementation of the mean shift algorithm,
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Figure 2: Mean shift convergence of data points

readers are referred to Comaniciu and Meer [7].
However, Comaniciu and Meer used a simple nearest neighbour clustering to associate

each data point to its cluster centre for their colour features. We find this approach is too
basic to be used for texture features, since unlike colour, the distribution of texture feature
data in the feature space is more complex and therefore needs a more robust clustering
technique. Furthermore, since our method uses a multiresolution feature extraction in
discrete wavelet frames, the decision about cluster membership for a pixel only needs to
be decided at the root level. The clustering output at all levels, except the root, only serve
as intermediate results, and therefore is better represented by some sort of a membership
function instead of a membership class. For these reasons, we opt to use the fuzzy c-means
clustering to cluster the data, while the mean shift algorithm is just used to estimate the
number of clusters and the cluster centres.

5 Texture Segmentation
The texture segmentation problem deals with composite textures, i.e. an image contains
several different types of texture. Our proposed texture segmentation algorithm has a hier-
archical structure and consists of two phases: a top-down decomposition phase followed
by a bottom-up segmentation phase.

5.1 Top-Down Decomposition Phase
In the top-down decomposition phase, we perform a K-level discrete wavelet frames de-
composition. For a 2n × 2n image, this results in 3K + 1 planes of 2n × 2n data, which
is a large amount of data for use with the mean shift algorithm. For the algorithm to be
efficient computationally, it is necessary to find a way to reduce the amount of data to be
clustered. Recall that for the standard wavelet transform, the output of the filter is sub-
sampled at each level resulting in an output with the same size as the input image, while
discrete wavelet frames are an over-complete wavelet transform where all the output data
are preserved. If we sample the DWF output every 2k samples, where k = 1, ...,K is the
level associated with a particular filtered image, the output will be exactly the same as the
wavelet transform.
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Figure 3: 3D plot in the feature space for (a) wavelet transform coefficient, (b) modified DWF
coefficient

However, we do not want to use the wavelet transform coefficients for segmentation
as they are of a very high variance. For example, the 3rd level coefficients of the wavelet
transform are sampled every 8 coefficients both horizontally and vertically, and if we plot
these into a feature space, there will not be well defined clusters due to the high variance,
even after applying some smoothing process. While the wavelet transform is perfectly
reconstructable, thus making it very good in some other fields, it is not very suitable
for image segmentation, at least for the fully unsupervised case. If the coefficients of
the discrete wavelet frames are carefully chosen rather than simply throwing away every
other data point as in the wavelet transform, well defined clusters can be obtained and the
amount of data can also be reduced greatly.

A simple yet reliable method is to take the mean of energy within a distinct blocks. For
each filtered image, the DWF coefficients are divided into distinct blocks of size 2k ×2k,
and the mean absolute value of the data within the blocks are taken as the new coefficients
of the DWF at that level. This results in data reduction of factor (2k×2k) for that particular
filtered image. If this procedure is repeated for every filtered image of the DWF we will
have the same output configuration as the wavelet transform but with better coefficients.
Figure 3 shows a 3D plot of coefficients at level 3 for both the wavelet transform and the
modified DWF of the same image consisting of 3 textures. Notice the data of the wavelet
transform coefficients are poorly scattered and end up detecting 4 clusters instead of 3.

At this point, we label the original image of size 2n × 2n with level index 0 (the root
level), the four sub-images of size 2n−1 × 2n−1 with level index 1 and so on. Since the
discrete wavelet frames provide good spatial and frequency energy localization, we may
take the energy value of each modified DWF coefficient as an energy feature. However,
the variance of the feature is still high since only one sample is used. By assuming that
neighbouring DWF coefficients are identically and independently distributed, the variance
can be reduced by performing a local averaging or smoothing operation. On the one hand,
it is desirable to have a large window to reduce the statistical variations. On the other
hand, since a large window centred at points in the texture boundary region may contain
multiple texture classes, the window size has to be small.

To avoid this problem, we choose to use a sophisticated adaptive smoothing algorithm
developed by Chang et al [4], which repeatedly implements a simple local averaging op-
eration until some criterion is satisfied. The smoothed energy values are then normalized
to the range between 0 and 1 within each node so that they can be conveniently used for
segmentation in the bottom-up phase, as well as to make sure that no components will



artificially dominate the clustering process.

5.2 Bottom-Up Segmentation Phase
In the bottom-up phase, we start with level K and produce an intermediate segmentation
result for level K − 1 using the four sub-images available at level K. To generate the
intermediate segmentation, the four sub-images of size 2n−K × 2n−K are integrated in a
way that it can be viewed as four-dimensional 2n−K × 2n−K data, before the mean shift
algorithm is applied and provides us with the number of clusters detected in the data as
well as the cluster centre positions. As mentioned in the last section, the fuzzy c-means
clustering (FCM) is chosen above other clustering techniques and is applied to the four-
dimensional data using the information provided by the mean shift. The fuzzy c-means
clustering algorithm is an iterative procedure described in the following:

Fuzzy C-Means Clustering Algorithm

Given M input data {xm;m = 1, ...,M}, the number of clusters C (2 ≤C < M), and the fuzzy weighting exponent
w, 1 < w < ∞, initialize the fuzzy membership functions u(0)

c,m with c = 1, ...,C and m = 1, ...,M which are the
entry of a C×M matrix U (0). Perform the following for iteration l = 1,2, ...:

1. Calculate the fuzzy cluster centres vc
l with vc = ∑M

m=1 (uc,m)wxm/∑M
m=1 (uc,m)w

2. Update U (l) with uc,m = 1/∑C
i=1

(
dc,m
di,m

) 2
w−1 where (di,m)2 = ‖xm − vi‖2 and ‖ · ‖ is any inner product

induced norm.
3. Compare U (l) with U (l+1) in a convenient matrix norm. If ‖U (l+1) −U (l)‖ ≤ ε stop; otherwise return to

step 1.

The value of the weighting exponent, w determines the fuzzyness of the clustering de-
cision. A smaller value of w, i.e. w is close to unity, will give the zero/one hard decision
membership function, and a larger w corresponds to a fuzzier output. Our experimen-
tal results suggest that w = 2 is a good choice. The advantage of using the mean shift
algorithm together with the fuzzy c-means clustering is demonstrated here. The fuzzy
c-means algorithm is not a fully unsupervised clustering method as it requires the number
of clusters to be known a priori. Besides that, one other drawback of the fuzzy c-means is
finding the best way to initialize the fuzzy membership function.

The FCM algorithm finds a local minimum of ΣC
c=1ΣM

m=1uw
c,md2

c,m by solving uc,m and
vc, and its output depends on the initial value of U (0). Various methods have been pro-
posed on the best way to initialize U (0) such as the maximin distance algorithm. But by
using the mean shift, it not only provides the FCM with the number of clusters, but also
the cluster centres, meaning that the initial value of U (0) is already quite close to the final
value of U (0). Hence part of the task of the FCM, that is to find appropriate cluster cen-
tres, is done. Experiments have shown that the FCM algorithm terminates after just a few
iterations, thanks to the precise location of the cluster centres.

The output of the fuzzy c-means is a 2n−K × 2n−K membership function of Nc di-
mension, where Nc is the number of clusters. Each element of the membership function
describes the membership value with respect to a particular type of cluster and the sum
of these elements is equal to 1. The membership function is then interpolated to size
2n−K+1×2n−K+1 so that it has the same size with the data at the following level. For sim-
plicity, a linear interpolation algorithm is used to interpolate the membership function.

At level K − 1, the interpolated membership function is integrated with the 3 sub-
images at this level resulting in an (Nc +3)-dimensional data to be used for the next mean



shift and FCM processes. These procedures of data integration, mean shift, clustering and
interpolation are applied recursively from bottom to top so that we eventually obtain the
segmentation result of the root level, i.e. the original image. The final crispy segmentation
at level 0 can be determined by assigning each pixel to the class where it has the highest
probability of membership. Note that the number of clusters detected by the mean shift
algorithm can be different at each level. We might get a wrong number of clusters in the
bottom level, but that is just an intermediate result, where not all data are utilized. What
matters is the final segmentation result, after all data is taken into account. The incorrect
number of clusters in the bottom level might be refined by the data at the higher levels.

6 Experimental Results
We applied our texture segmentation algorithm to several images of composite textures
with size 256× 256 pixels and 256 grey levels. Textures from the Brodatz album [1]
are used to made up the composite texture images. None of the textures used in our
experiment can be discriminated by grey level values alone. An image is decomposed
using the modified DWF for up to three levels using, in our case, an 8-tap Daubechies
wavelet filter. The radius, h for the mean shift algorithm is critical, and from experiment
a suitable value of h at all levels is found to be 0.2.

Figure 4 shows the sequence of segmentation results obtained at each level for a com-
posite texture image which consists of 4 textures from the Brodatz album, D017, D024,
D055 and D077. In this example, the initial segmentation result obtained at level 2 already
gives a quite good segmentation and is used as a basis for higher level processing. It can
be clearly seen that the coefficients from the higher levels help in refining the boundary
of the textures.

(a) (b) (c) (d)

Figure 4: (a) 4-textured image, and its segmentation result at, (b) level 2 (64× 64), (c) level 1
(128×128), (d) level 0 (256×256, final result)

Figure 5 shows an example of applying the texture segmentation algorithm to a num-
ber of images with different number of textures. The 2-textured image consists of texture
D012 and D017, the 3-textured image of texture D054, D074 and D102, the 4-textured
image of texture D001,D011,D018 and D026, while the 5-textured images consists of
texture D001, D053, D065, D074 and D102. All the results in Figure 5 show a correctly
identified number of texture as well as good segmentation. All together, we have applied
our algorithm to 50 composite textures, and the results are summarized in Table 1.

A return of 90% correctly detected number of textures is very promising. Except for
one of the 3-textured image, which the algorithm detected to have 5 textures, all other
incorrect results only miss by plus/minus one texture. Figure 6 shows an example of a
wrongly detected number of textures. The image consists of texture D065, D066, D086
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Figure 5: Segmentation result for different number of textures

and D102. From the figure, it is clear that the incorrect segmentation is caused by the
fact that the top half texture appears to contain two visually different regions. For the 5
incorrect cases, the cause is either the same problem as above, or the fact that two textures
are almost visually the same.

Number of Number of Images with Number of textures detected
textures images tested correctly detected for the wrong detection case

in an image number of textures 2 3 4 5
2 16 15 1
3 12 11 1
4 13 12 1
5 9 7 2

Total 50 45 (90%) 1 2 2

Table 1: Percentage of correctly detected number of textures.

Table 2 shows the percentage of segmentation errors for the five correctly segmented
textures shown in Figure 4 and 5. All of the images give an error percentage of below 5%
which is a good result. Notice that the more texture boundaries there are, the more difficult
decisions must be made, resulting in an increasing number of misclassified pixels. Non-
boundary pixels seem to be well distinguished by the proposed algorithm. All together
from the 45 correctly segmented images, we obtain an average of just 3.72% misclassified
pixels.

Figure 7 shows segmentation results for synthetic textures composed of the +- and L-
symbols. This texture pair has a spectrum with the same magnitude but different phases.
Since the illumination of both textures are the same, this example also shows that it is the
surface texture, not the illumination conditions that is being classified. Figure 8 shows
a segmentation result on a real scene image, where the algorithm correctly segmented
the sky, mountain and water into 3 separate regions. Since it is difficult to define an
objective boundary for these examples, the percentage of segmentation errors cannot be
measured. However, from the figures, it is clear that the proposed algorithm works well
in distinguishing synthetic texture as well as real scene image.

Finally, we compare the performance of our algorithm with a segmentation technique



Image Textures Misclassified Percentage
pixels of error

Figure 4 4 1654 2.52%
Figure 5(a) 2 621 0.90%
Figure 5(b) 3 1771 2.70%
Figure 5(c) 4 1615 2.46%
Figure 5(d) 5 2816 4.29%

Table 2: Percentage of misclassified pixels

based on the wavelet transform segmentation, i.e. the data to be clustered by the mean
shift and the FCM is generated by the wavelet transform instead of the modified DWF.
Figure 9 compares the performance of the modified DWF with the wavelet transform
method for the image in Figure 5(d). Clearly, the wavelet transform fails to provide good
clusters in the feature space resulting in a poor segmentation. Also, the sampling of poorly
scattered data points during the mean shift results in a rather inconsistent segmentation
for the wavelet transform-based segmentation. The modified DWF is therefore superior
to the wavelet transform in terms of segmentation performance, and is superior to the
standard DWF in terms of computational speed.

Figure 6: Example of incorrect segmenta-
tion

Figure 7: Segmentation result of synthetic
textures

Figure 8: Segmentation result of real image
texture

Figure 9: Result using modified DWF (left)
and wavelet transform (right)

7 Conclusion
In this paper, we have developed a new framework for fully unsupervised texture segmen-
tation based on modified discrete wavelet frames and mean shift algorithm. By modify-
ing the discrete wavelet frames, much better clustering is obtained on a reduced set of
data, making possible the use of the mean shift algorithm to detect the correct number
of clusters, and substantially reduces the processing time. The mean shift also provides
the position of the cluster centres which effectively solves the problem of initializing the
membership function in the fuzzy c-means algorithm, and hence reducing the fuzzy itera-
tions. From the results of the experiments we can see that the proposed method can detect
the correct number of clusters as well as segmenting the image correctly in composite tex-



tures, synthetic textures and real scene images, while maintaining the low computational
load.
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