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Abstract 
 

    A new approach for estimating 3D head pose form a monocular image is 
proposed. Our approach employs general prior knowledge of face structure and 
the corresponding geometrical constraints provided by the location of vanishing 
point to determine pose of human faces.  Eye-lines and mouth-line are assumed 
parallel in 3D space, and the vanishing point formed by the intersection of the eye-
line and mouth-line in the image can be used to infer 3D orientation and location 
of human face. Perspective invariance of cross ratio and harmonic range is used to 
locate the vanishing point stably.  The robustness analysis of the algorithm with 
synthesis data and real face images are enclosed. 

 

1 Introduction 
 
Two different transformations may be used for pose estimation from a single view: 
perspective or affine. The former one, e.g. [9], precisely models the actual projection 
of a 3D scene to the image plane. However the calibration of the camera is complex 
and could deliver up to a fourfold ambiguity in the estimation of the pose. Most 
existing real-time systems usually use affine transformation, e.g. [5], because it has 
simple calculations and is a good approximation of the perspective projection provided 
the depth of the object is small compared with the distance between the camera and 
object. This is usually the case in face tracking applications, but significant 
perspective distortion in the image will result when viewing the face from close range 
with a short focal length. Two-fold ambiguity resulted under affine assumption 
because it is based on the well-known three-point model developed by Huttenlocher 
and Ullman [11]. 

T. Horprasert et al [9] employs projective invariance of the cross-ratios of the four 
eye-corners and anthropometric statistics to estimate the head yaw, roll and pitch. Five 
points, namely the four eye corners and the tip of nose, are used. The four eye corners 
are assumed to be co-linear in 3D. This, however, is found not to be exactly true in 
general.  Affine projection is assumed in [5, 4, 17, 8]. Gee et al [5] achieved a real-
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time face tracker by utilizing simple feature trackers searching for the darkest pixel in 
the search window. The unique solution has to be searched by projecting both poses 
back into the image plane and measuring the goodness of the fit.  In their earlier work, 
Gee and Cipolla [4] used five key feature points, nose tip, the outer eye corners and 
mouth corners, to estimate the facial orientation. The facial model is based on the 
ratios of four distances between these five relatively stable features, where the ratios 
were assumed not to change very much for different facial expressions.  
   The domain knowledge of human face structure can be advantageously used for 
pose estimation. In this paper, we study a novel approach that uses the vanishing point 
to derive a new and simple solution for measuring pose of human head from a 
calibrated monocular view. The vanishing point can be located using perspective 
invariance of cross ratio and the harmonic range. The 3D direction of eye-line and 
mouth-line can then be inferred from the vanishing point. Also, an analytic solution of 
orientation of the facial plane can be obtained when the ratio of the eye-line and 
mouth-line segments is given.  Furthermore, the 3D coordinates of the four corners 
can be located if one of the lengths of the eye-line and mouth-line segments is given. 
Fischler and Bolles [2] revealed that a unique solution cannot be assured for the 
Perspective Four-Projection (P4P) problems. The P4P problem has a single theoretical 
solution [14, 6] when the coplanar points are in general configuration (no three co-
linear scene points, non co-linear image points).  Consequently, the solution of our 
algorithm is unique because the corner points we used are coplanar in 3D space, 
forming the facial plane. Vanishing point has been widely used in computer vision 
[10, 19, 15]. However, pose determination of the human face by using vanishing point 
is an unexplored approach.  
 

2 Pose determination 
 

2.1 Location of the vanishing point  
In order to locate the vanishing point stably, we use perspective invariance of cross 
ratio and in particular the harmonic range.  
    An ordered set of collinear points is called a range, and the line passing through is 
called its axis. A range of four points, e.g. {A, B, C, D} in Figure 1(a), is called a 
harmonic range if their cross ratio satisfies: 
                                             [A, B, C, D] = (AC/BC)/(AD/BD) = −1                           (1) 
    Let {A, B, C, D} be four image points in general position, see Figure 1(b). Let P be 
the intersection of AB and DC, Q the intersection of CB and DA. Such a set of six 
points {A, B, C, D, P, Q} is called a complete quadrilateral.  
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Figure 1: (a) Cross ratio; (b) complete quadrilateral; (c) eye and mouth lines. 

 

  



Proposition Let I be the intersection of AC and BD, E and F be the intersections of IQ 
with AB and CD, respectively, see Figure 2. Then {P, F, D, C} and {P, E, A, B} are all 
harmonic ranges. 
   Proof of the proposition can be done based on the following propositions and 
theorem [12]. 
Proposition 1 A unique collineation is determined that maps four arbitrarily given 
image points in general position to four arbitrarily given image points in general 
position. 
Proposition 2 Let D′ and C′ be distinct space point, and let F ′ be their midpoint, see 
Figure 2. If P′ is the vanishing point of the space line passing through D′ and C′, then 
{P′, F ′, D′, C′} is a harmonic range.  
Theorem 1 The cross ratio is invariant under collineations. 
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Figure 2: Mapping four arbitrarily given image points. 

 
    According to proposition 1, four points {A, B, C, D} can be mapped to a rectangle 
by some collineation, see Figure 2. D′, F′, C′, P′ and Q′ correspond to D, F, C, P and 
Q respectively. P′ is a vanishing point, F′ and E′ is the midpoint of D′C′ and A′B′ 
respectively. {P′, F′, C′, D′} is harmonic range according to proposition 2, Hence, {P, 
F, D, C} and {P, E, A, B} become harmonic ranges according theorem 1, i.e. 

                                         [PFDC]  =  -1                                                         (2) 
                                         [PEAB]   =  -1                                                         (3) 

    Hence, the vanishing point P can be determined using  (2) or (3). 
The location of far-eye and mouth corners form the quadrilateral and its equivalent 

completion is depicted in Figure 1(c). Let E1 corresponds to D, E2 corresponds to C, 
M1 corresponds to A, and M2 corresponds to B. We can determine the vanishing point 
formed by the eye-line E1E2 and mouth-line M1M2. 

   Although two parallel lines are sufficient to compute the vanishing point, we use 
three sets of parallel lines.  Three vanishing points will be detected due to image noise. 
Three points VP1, VP2, VP3 are obtained from eye-line E1E2 and eye-line E3E4, eye-
line E1E2 and mouth-line M1M2, eye-line E3E4 and mouth-line M1M2 respectively, as 
shown in Figure 3.   
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Figure 3: Three possible vanishing points formed by the intersections of the two eye 
lines and the mouth-line in the image. 
 

  



    Actually, we get a least-squares solution of the vanishing point using the above 
three parallel lines.  
 
2.2 Pose determination 
If the vanishing point is P(u∞, v∞), (dx, dy, dz) represent the 3D-direction vector of eye-
lines and thus mouth-line (they are parallel, have the same direction vector). We have 
[7]:  
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   Lets us assume (xe1, ye1) and (xe2, ye2) are normalized image coordinate (fx = fy =1) of 
two far corners of eyes, E1(Xe1, Ye1, Ze1) and E2(Xe2, Ye2, Ze2) are their 3D coordinate 
respectively.    (xm1, ym1) and (xm2, ym2) are normalized image coordinates of two 
corners of mouth, M1(Xm1, Ym1, Zm1) and M2(Xm2, Ym2, Zm2) are their 3D coordinate 
respectively.  
                                Xei = xeiZei ,          Xmi = xmiZmi                                          (5) 

                              Yei = yeiZei  ,    Ymi = ymiZmi                                  (6) 
i =1, 2..  
    Generally speaking, the ratio (denoted as r) of the length of the eye-line segment 
(denoted as De) to the length of the mouth-line segment (denoted as Dm) is a more 
stable measure than the lengths themselves for different people. So the case that r is 
given instead of the lengths themselves is considered firstly. The ratio is immediately 
available from a frontal-parallel view of the face. The orientation of the facial plane 
and relative positions of the corners can be located in the first case. In the second case, 
both the ratio and one of the lengths are given hence the absolute 3D positions of the 
four corners and the orientation of the facial plane can be determined.  
    The above two cases are discussed as follows respectively. 
 
Case 1: r is known 
In this case, the orientation of the facial plane and 3D relative positions of the feature 
corners can be calculated using the vanishing point and r.  From (4), we arrive at  
                                                 (Xe2 −Xe1)/De= dx                                                 (7) 
                                                 (Ye2 −Ye1)/De = dy                                                 (8)  
                                                 (Ze2−Ze1)/De = dz                                                 (9) 
                                                (Xm2−Xm1)/Dm = dx                                               (10) 
                                                (Ym2−Ym1)/Dm = dy                                                      (11) 
                                                 (Zm2−Zm1)/Dm = dz                                                 (12) 
From the definition of r, we have,  
                                                r =De/Dm                                  (13) 
From  (7) to  (13), we can obtain 
                                               Ye2-Ye1 = (dy/dx)(Xe2−Xe1)                                (14) 
                                               Ze2-Ze1 = (dz/dx)(Xe2−Xe1)                                              (15) 
                                               Xm2-Xm1 = ( Xe2−Xe1)/r                                               (16) 

  



                                          Ym2-Ym1 = ( Ye2−Ye1)/r                                                       (17) 
                                          Zm2-Zm1 = (Ze2−Ze1)/r                                                        (18) 
    Let Xe2−Xe1 = 1, so Ye2−Ye1, Ze2−Ze1, Xm2−Xm1, Ym2−Ym1, Zm2−Zm1 can be determined 
in turn using (14) to (18). This assumption means we can get only relative 3D 
positions of the feature corners. However the orientation can be obtained uniquely. 
    Replace Xe1 and Xe2 with  (5), we have 

             Xe2−Xe1 = xe2Ze2−xe1Ze1                                                      (19) 
    Replace Ye1 and Ye2 with  (6), we have 
                                         Ye2−Ye1  =  ye2Ze2−ye1Ze1                                                      (20) 
Ze1 and Ze2 can be solved from  (19) and (20). Hence Xe1, Xe2, Ye1 and Ye2 can be solved 
using  (5) and (6). 
Similarly Zm1 and Zm2 are found using following equations:  
                xm2Zm2−xm1Zm1  = Xm2−Xm1                                               (21) 
                                           ym2Zm2−ym13Zm1 = Ym2−Ym1                                               (22) 
Hence Xm1,Xm2,Ym1 and Ym2 are found using (5) and (6). 
 
Case 2: De or Dm and r are known 
In this case, the absolute 3D positions of the feature corners can be determined. Let 
assume De is given. The Eqs of (7) to (9) described in the above case are still be used. 
Replace Xe1 and Xe2 in (7) with (5), we have 
                                          (xe2Ze2−xe1Ze1)/De = dx                                                     (23) 
From (9), we obtain 
                                           Ze1 = Ze2−Dedz                                                             (24) 
From  (23) and  (24), we arrive at  
                                            (xe2−xe1)Ze2+Dedzxe1 = Dedx                                (25) 
Hence, we obtain 
                                            Ze2 = De(dx−dzxe1)/(xe2−xe1)                                (26) 
Replace Ye1 and Ye2 in (8) with (6), we have 
                                            (ye2Ze2−ye1Ze1)/De = dy                                                    (27) 

From  (26) and (27), we obtain 
                                            (ye2−ye1)Ze2+Dedzye1 = Dedy                                            (28) 
Hence, 
                                            Ze2 =De(dy−dzye1)/(ye2−ye1)                                              (29) 
Ze2 and Ze1 can be calculated from (26) or (29) and (24). 
    Hence Xe1, Xe2, Ye1 and Ye2 are found using  (5) and (6). 
    Dm can be obtained using r and De with (13). Similarly, the 3D coordinates of the 
mouth corners M1(Xm1, Ym1, Zm1) and M2(Xm2, Ym2, Zm2) can be calculated using their 
corresponding image coordinates then. 
    From the 3D coordinates of the four corners obtained under above two cases 
(relative coordinates for the first case and absolute coordinates for the second case), 
we can calculate the facial normal line n as the cross product of the two space vectors 
M2E2 and M2M1 (see Figure 1(c)): 
                 n = M2E2×M2M1                            (30) 
    The four points E1, E2, M1 and M2 are in general not expected to be coplanar due to 
noise. So instead, the facial normal line could be calculated as the average of 

  



following cross products of the pairs of space vectors: M2E2 and M2M1, E2E1 and 
E2M2, E1M1 and E1E2, M1M2 and M1E1. 
 
2.3 Proof of the pose determination algorithm 
Assume that the camera is fully calibrated and so the N-vectors of each of the corner 
points are known.  (By definition, an N-vector is a unit vector that is in the direction 
starting from the optical center to the image point [12]). As such, we have mE1, mE2, 
mE3, mE4, mM1 and mM1 of the eye corners and mouth corners as in Figure 2, where 
mE1, mE2, mM1 and mM2 are N-vectors of the corners E1, E2, M1, and M2 respectively. 
 
Four corners and the ratio are known. The direction of the eye-line and mouth line 
can also be inferred from the N-vectors of the far-eye and mouth corners. By 
hypothesis, lines E1E2, E3E4 and M1M2 are parallel in space.  One can thus obtain the 
equations : 
                                  (kE1mE1   − kE2mE2)  =   k1n                                                (31) 
                                  (kM1mM1 − kM2mM2) =  k2n                                               (32) 
where kE1, kE2, kM1, kM2, k1 and k2 are scale constants. n represents the direction vector 
of the eye-line (and the mouth-line).  
From  (31) and (32), we obtain 
                                 (kM1mM1 − kM2mM2) = (k2/k1)(kE1mE1 − kE2mE2)                        (33) 
Let kE1=1, we have 
                                 (mM1 −mM2  mE2)((k1/k2)kM1  (k1/k2)kM2  kE2)T = mE1               (34) 
The ratio of the eye-line and mouth-line segments is r, we obtain  
                                 ||kE1mE1−kE2mE2||  = r ||kM1mM1−kM2mM2||                                 (35) 
                          r = k1/k2                                                                           (36) 
We can get kE2, kM1 and kM2 from (36) and (34). 
    We can calculate the facial normal n as the cross product of the two space vectors 
M2E2 and M2M1: 
                                 n = M2E2 × M2M1                                                             (37) 
The orientation of the facial normal will be 
                                (kE2mE2 − kM2mM2) × (kM1mM1 − kM2mM2)                                 (38) 
    The relative position of the four feature corners can be determined using this 
method. This method can use a generic ratio of r and so is quite a general method.  We 
do not need to measure r for each particular face. However, to justify our assumption, 
an experiment is conducted to understand the statistical nature of r. We need to 
ascertain that the standard deviation of r is indeed very small when a face image is 
with neutral or with slight expressions.  This will be discussed in Section 2.4. 
 
Six corners are known.  Assume that the camera is fully calibrated and so the N-
vector for each of the corner points is known.  As such, we have mE1, mE2, mE3, mE4, 
mM1 and mM2 of the eye corners and mouth corners as in Figure 1(c).  By hypothesis, 
lines E1E2, E3E4 and M1M2 are parallel in space.  One can thus obtain the equations : 
                                    kE3mE3  −  kE4mE4   = kE1mE1 −kE2mE2                                                      (39) 
                                    kM1mM1 − kM2mM2  = kE1mE1− kE2mE2                                                      (40) 
where the k values denote the (unknown) distances of the corner points to the optical 
center. 

  



    Being homogeneous, we can set kE3 = kM1 = 1.  Thus we have 6 unknowns in 6 
linear equations and hence a unique solution is obtained in general. Or one could 
obtain the same results as follows.  For each of  (39) and (40), take the cross product 
on both sides wrt mE1 and followed by the inner product wrt mE2 yielding : 
                                 (mE3  × mE1)TmE2  −  (kE4mE4 × mE1 )TmE2    =    0                   (41) 
                                 (mM1 × mE1)TmE2  −  (kM2mM2 × mE1 )TmE2   =    0                   (42) 

Hence, kE4 and kM2 are solved.  Consequently, the rest of the k values are retrieved 
from (39) and (40).  This means all the corner points are found up to a scale factor.  
The normal to the plane is computed more robustly by finding the least squares plane 
from these six points.  Euclidean position of the face is found once one of the k-values 
is known or, equivalently, the length of the mouth or eye corners are known.  This 
could arise from stereo vision or by prior knowledge of person’s face.  

 
2.4 Variance of the ratio  
It should be noted that this ratio with respect to face expressions is not invariant. The 
mouth can deform significantly in the horizontal direction and thus leading to 
significant variation in the ratio. For example, the variances of the ratio of a male from 
Stirling database [19] with different expressions are found to be: 2.01 for neutral, 1.94 
for smiling, 2.0 for surprise, 1.89 for disgust. However, if the facial expression is 
slight, this ratio is still quite close to the fixed ratio that is set in our algorithm.  Our 
experiments show that it can tolerate some deviations from this fixed ratio. In general, 
the ratio is almost a generic constant for neutral expression of faces. Base on our 
experiments on some database, e.g. [19], we can say that our algorithm is workable on 
the face images with neutral or slight expressions. The average ratio of the 300 images 
with neutral expressions is found to be 1.98, the standard derivation of the ratio is 
0.02.  
 
3 Experimental results 
We have tried our algorithm on synthesized data and real image. The experiments 
show that our algorithm can provide a good estimation of pose of human head within a 
close distance.  
 
3.1 Simulation using synthesis data 
 
The synthetic data of different poses are produced as in Figure 4(a). The size of the 
test image is 512 × 512. The intrinsic and extrinsic parameters of the camera are as in 
Table 1, where (Cx, Cy, Cz) is the 3D world coordinate of the lens center, fx and fy are 
the scale factors of the camera along the x- and y-axis respectively. (u0, v0) are the 
coordinate of the principle point. We define a 3D rotation by three consecutive 
rotations around the coordinate axes, that is, a rotation by α degrees around the x-axis 
first, then a rotation by β degrees around the y-axis, and finally a rotation by γ degrees 
around the z-axis. The initial coordinates of the four corner points in the target face are 
set as:  

E1(-5.25, -6, Z), E2(5.25, -6, Z), M1(-2.65, -1, Z), M2(2.65, -1, Z) 
where Z is the distance along the z-axis from the origin to the face.  
 

  



      fx fy (u0,v0) (Cx,Cy,Cz) α β γ 
1000 1000 (255, 255) (0,0,50) cm 900 00 00 

Table 1:  Intrinsic and extrinsic parameters of the camera 
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Figure 4: Simulations. (a) Simulations for different poses; (b) Adding perturbations to the facial 
corners on the image plane perturbations n pixels to a corner point means the new position of 
the corner will lie at random within the corner-centered (2n+1)×(2n+1) window positions. 
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Figure 5: Errors of the facial normal when the perturbation applied to the four corners is 1 pixel. 
Three curves, top: maximum errors; middle: mean errors; bottom: minimum errors. The distance 
between the original facial plane and the image plane is: (a) 50 cm;  (b) 60 cm.   
 
We show an example of the simulation pose results generated by rotating the facial 
plane about the facial symmetry (see Figure 4(a) for details), and the perturbation 
applied to the four eye and mouth corners of 1 pixel deviation each as in Figure 4(b). 
Four corner points rotated about the face symmetry axis from left –800 to 800 in steps 
of 50. 100 simulation results are generated and averaged. The errors of the facial 
normal estimation are shown in Figure 5. We can see also that the closer the camera 
gets to the human face, the more accurate the estimations and this can be seen by 
comparing Figure 5(a) and Figure 5(b). The error is found to be less than 20 when the 
distance between the original facial plane and the image plane is 60cm. The errors of 
the 3D positions of the four corners are shown in Figure 6. The degenerate case (when 
the facial plane is roughly parallel to image plane) occurs in the angle range of (-20, 
20).  The degenerate case is detected when the eye-lines and mouth line are nearly 
parallel in the image. 

   
3.2 Experiment with real images 
We have extensively evaluated our algorithm on video sequences of face images, as a 
person is moving his head in various directions in front of a PC. The experiments 
show that our method has a good performance and is robust for pose estimation of 
human head.  The algorithm runs on a Pentium III 733M Hz PC in a speed about 25 
frames per second. Some frames from a sequence of a subject are shown in Figure 7, 
where the facial normals of a face image are represented as arrows shown under the 
face image. Eye and mouth corners are tracked using template-matching technique.  

  



 

 

     

   
Figure 6: 3D position errors of the four corners, top left: E1; top right: E2; bottom left  M1; 
bottom right: M2. 
 

   

     

      

 

                    

 

                   

 

 

   

                    

 

                  

 

      
Figure 7: Pose determination results of some frames from a sequence. 

 

4 Conclusion 
In this paper, we have presented a new methodology for computation of head pose by 
using projective property of the vanishing point. The computation is quite light. An 
analytic solution has been inferred and the pose can be determined uniquely when the 
ratio of the length of the eye-line segment to the length of the mouth-line segment is 
known. Our algorithm is reliable because the ratio is found to be stable from face to 
face with neutral or slight expressions. The approach is a new one where perspective 

  



projection and fully calibrated camera imaging model are employed. The robustness 
analysis shows that it is an alternative viable approach for estimating 3D pose 
(position and orientation) from a single view, especially when an automatic method of 
finding the vanishing point is possible. On the other hand, our algorithm is reliable 
because the ratio we used here is more stable than the use of the lengths themselves 
from face to face. Two alternative proofs of the vanishing-point method have been 
provided.  
    Accuracy of the vanishing point computation plays an important role on 
performance of the proposed method. The vanishing point can often be obtained from 
the image itself by some standard techniques [1, 13, 3, 16], and so making our 
algorithm practical.  In situations where the distance between the face and camera is 
close, the full perspective model that we used can provide more accurate pose 
estimation than other existing methods that are based on the affine assumption.  
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