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Abstract

This paper presents a new error equalisation method for construction of
mosaics built from a large number of images that may not completely cover
a scene (’sparse’ coverage without all the overlapping images in the neigh-
bourhood). The proposed method is shown to achieve consistent sparse im-
age mosaic construction with the final alignment error no bigger, and in most
cases smaller, than the error introduced by the transformation parameter esti-
mation method. The performance of the proposed method is validated using
simulation data as well as X-ray images acquired from non-destructive in-
spection of physically large aircraft components.

1 Introduction

To construct a mosaic, the correspondence between different images has to be established
first, such that matched sub-areas of the images represent the same object point (object
area). Various methods have been proposed to correctly model the displacement between
images in a mosaic. These include modelling displacement for each image pixel or esti-
mating the displacement of a coarse control grid [14] with the movement of each pixel
interpolated, usually by two-dimensional splines [16]. Other displacement models often
used include projective, affine, similarity or rigid transformations implemented globally
or locally [1, 12]. With the transformation model selected next step is to estimate its un-
known parameters. Many methods are available to perform this task, overview of which
can be found in [1, 3, 10]. Most of the transformation’s parameters estimation methods
operate on a pair of overlapping images at a time and as a result small errors in alignment
accumulate from one pair of images to the next. With large number of images in the mo-
saic this accumulated error can significantly reduce the overall mosaic quality, making the
mosaic globally inconsistent. This is particularly critical for mosaics constructed from a
sequence of images, which loops back on itself. There have been number of methods pro-
posed to address this problem. One of the most popular solutions is to align images to the

BMVC 2003 doi:10.5244/C.17.52



actual mosaic as it is being composed [2, 11, 15]. Another method is based on subdivid-
ing the sequence of images into subsets, with which internally consistent sub-mosaics can
be produced. The final mosaic is constructed from these sub-mosaics [15, 7]. A signif-
icantly different approach to the problem is proposed in [4, 13], where transformation’s
parameters are computed for all images in the mosaic in the same time (simultaneous
registration of all images). This enables to impose global consistency constraints on the
estimated parameters. The drawback of these methods is their computational cost, which
practically prevents the use of pixel based similarity measures for the image registra-
tion. The complexity of the global alignment can be reduced by using an error equalisa-
tion methodology. In this case local registrations (between overlapping image pairs) are
treated independently with the global consistency of the mosaic imposed by introduction
of small changes to the estimated local transformations [17, 5, 6].

Using translation as the displacement model, this paper presents a method for mo-
saicing images that ’sparsely’ cover a scene. The proposed method is based on error
equalisation methodology and requires that each image in the mosaic is allocated to a
single scanning path (given as a direction or a set of directions). Although true image po-
sitions can deviate from the scanning path, it is assumed that these deviations are bounded.
This new method is a further development of the method previously proposed [8] for the
construction of the ’dense’ mosaic (complete coverage of the scene) with a rigid transfor-
mation used for image alignment.

2 Mosaic Consistency Problem

Mosaic inconsistency is one of the main problems in the construction of a mosaic from
a large number of images. A mosaic is said to be consistent when the position of any
image in the mosaic is unique (does not depend on the sequence of local transformations
used to compute its position). The purpose of the error equalisation is to overcome mosaic
inconsistency. Figure 1 shows a diagram representing an example of a mosaic constructed
from 5 images.
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Figure 1: Diagram of a mosaic of five images

Using a common co-ordinate system, the centre positions ofm images in a mosaic are
denoted by:

{(xi ,yi) : 1≤ i ≤m} (1)

Using the differences between the image positions, the local translations required be-
tween overlapping image pairs can be computed for the current positions of images in a
mosaic and are denoted by:

{
Ti, j : 1≤ i ≤m; 1≤ j ≤m; j > i; M i, j = 1

}
(2)



whereM i, j = 1 indicates ovelapping imagesi and j, and

Ti, j = [Txi, j ,Tyi, j ]
T = [x j −xi ,y j −yi ]

T (3)

Since these computed local translations are consistent (because they are obtained from
the image positions in the mosaic), it implies, for the mosaic shown in Figure 1, that the
following relations have to be true:

T1,5 = T1,2 +T2,4 +T4,5; T2,4 = T2,3 +T3,4 (4)

In practical image mosaic construction the exact positions of the images are unknown
and have to be computed from a sequence of local translations. These are also unknown
and have to be estimated from the image contents. This is done for each overlapping
image pair and the set of local translations estimated form images in the mosaic are
denoted by: {

T̂i, j : 1≤ i ≤m; 1≤ j ≤m; j > i; M i, j = 1
}

(5)

It is unlikely for T̂i, j to be consistent because they are contaminated by some inher-
ent estimation errors and found based on the similarity existing in an image pair without
relating to their positions in the mosaic. On the other hand if the centre positions ofm
images in the mosaic are known the local translations, required between all overlapping
image pairs, can be computed as differences between the corresponding image positions,
as in equation 3. The local translations computed in such a way are consistent although it
does not necessarily mean that the images are properly aligned. Although the local trans-
lations, estimated based on image similarity, can be used to place the images into a mosaic
as long as no closed loop is formed from them in the process, errors are accumulated as
the local translations are cascaded to build the mosaic. Since the accumulated error of
the local translations can cause a serious degradation in the mosaic quality, the estimated
local translations based on image similarity should not be used directly for mosaic con-
struction. The optimal image positions should not only satisfy the consistency conditions
(position of the image should not depend on the sequence of local translations used), but
also the local translations computed from them should be as close as possible to the esti-
mated translations based on image similarity. This is achieved via the minimisation of the
cost functionE(p) with p = [x2, . . . ,xm,y2 . . . ,ym] representing the positions of the image
centres.

E(p) = ∑
i, j:1≤i≤m;1≤ j≤m

j>i; M i, j=1

((
Txi, j − T̂ xi, j

)2 +
(
Tyi, j − T̂ yi, j

)2
)

(6)

3 Sparse Mosaic Construction

In sparse coverage of a scene only a small number of estimated local translations are avail-
able for the determination of the image positions in a mosaic. This can cause degradation
in the mosaic quality, as the positions of the images computed based on minimisation of
the cost functionE(p) are not sufficiently constrained by the adjacent images. To improve
the mosaic quality, it is necessary to introduce extra constraints on the image positions.
Figure 2 shows an example of the simulated sparse mosaic, where circles represent the
image centres and lines represent the valid local translations computed between over-
lapping images. The constraints can be divided into two classes. The first class is an



inner-path constraint, illustrated graphically in Figure 3 with image centres represented
by black circles, whereas the second class is an inter-path constraint.
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Figure 2: Simulated sparse mosaic

Two different constraints are proposed for the first class. The first type, applicable to
linear scanning paths only, is to restrict the distance of an image from the corresponding
scanning line.
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Figure 3: Illustration of constraints in the first class

Knowing the location of a scanning path defined by the centre position of the first
image in the scanning path,[xk,yk], and the vector normal to ther-th scanning path,ntr

r ,
the condition restricting the distance of thei-th image from the scanning line to which this
image belongs can be expressed as

∣∣Tk,i ◦ntr
r

∣∣ = ∆k,i ≤ d∆ (7)

wherei ∈ Ir andIr represents a set of indices of all images which belong to the scanning
path ’r ’, Tk,i ◦ ntr

r is the inner product between vectorsTk,i andntr
r , andd∆ is the limit

allowed for an image location to deviate in the direction perpendicular to the scanning



direction. It is important to notice that the first image in each scanning path is free to
move, but its movement affects all the images in the given scanning path; the only excep-
tion is the first image in the first scanning path as it is used to anchor the mosaic. The
second type of the constraint in the first class is to limit the disparity between the local
translations, estimated based on image similarity and computed based on image positions,
for all overlapping images in the same scanning path. This constraint is particularly im-
portant for images, which overlap not only with images in the same scanning path, but
also with images from a different scanning path. Without this constraint minimisation
of the cost function given by equation 6 may cause excessive increase of the transversal
component of the computed translation. To avoid this, the transversal component of the
translation computed based on image positions,T tr

i, j (perpendicular to the scanning direc-
tion), should not deviate too much from the same component of the translation estimated
based on image similarity,̂T tr

i, j . To achieve this, the following constraint is introduced for
all overlapping images in the same scanning path:

∣∣(Ti, j − T̂i, j
)◦ntr

r

∣∣ =
∣∣T tr

i, j − T̂ tr
i, j

∣∣≤ ∆T tr (8)

wherei, j are the indices of the overlapping images in the same scanning path withi, j ∈
Ir ; j > i; M i, j = 1, and∆T tr is the difference allowed betweenTi, j andT̂i, j in the direction
perpendicular to the scanning direction.∆T tr could be interpreted as the local limit for
deviations from the scan direction, andd∆ as the global limit. Based on this interpretation
inequality∆T tr < d∆ can be justified.
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Figure 4: Illustration of the constraint in the second class

The constraint of the second class is illustrated in Figure 4. While the previous two
constraints restrict the image positions along a scanning path, this constraint is imple-
mented to control the relative position of the adjacent scanning paths. This is particularly
useful when there is no or only a limited number of scans to establish the separation
distance between different scanning paths. An example of such a situation would be to
construct a mosaic for Figure 2 without scanning paths 7 and 8. The disparity between the
direction required by the images in different scanning paths and the direction computed
from image positions is constrained using:

∣∣∣Ti, j ◦nint
r

∣∣∣ = ∆int
i, j ≤ d∆int (9)

wherenint
i, j is the vector normal to the direction derived from the estimated positions of

imagesi and j, andd∆int is the maximum deviation allowed. As the number of images



for which this constraint is imposed is small, the constraining directions (vectornint
i, j ) can

be selected manually or, as in the example described in section five, they can be derived
from data obtained from the acquisition system.

4 Minimisation of Cost Function

Writing the cost function given by equation 6 in a matrix form gives

E (p) = ‖A ·p−b‖2 (10)

whereA is a matrix describing the correspondence between image positions and com-
puted local translations andb is a vector containing the estimated local translations. Sim-
ilarly writing the constraints given by equations 7 - 9 in a matrix form gives:

C ·p≤ d (11)

whereC is a matrix describing all the constraints imposed on image positions andd is a
vector describing allowed deviations. To simplify the notation, the two subscript notation
(defined by matrixM) is replaced by a one subscript notation using columnwise indexing
of matrixM .

Assuming that the whole mosaic is anchored at the position of the first image(x1,y1)
and this position is fixed at the co-ordinate origin, matricesA andC, and vectorsb andd
have the following forms:

A =




(i−1)
↓ ...

( j−1)
↓ ...

(i−2+m)
↓

( j−2+m)
↓

· · ·0 −1 0· · ·0 1 0· · · · · · 0· · ·
· · ·0 · · · · · ·0 −1 0· · ·0 1 0· · ·

...
...



←(k)
←(k+1)

(12)

C =




(k−1)
↓ ...

(i−1)
↓ ...

(k−2+m)
↓ ...

(i−2+m)
↓

· · · −ntr
r (1) · · · ntr

r (1) · · · −ntr
r (2) · · · ntr

r (2) · · ·
· · · ntr

r (1) · · · −ntr
r (1) · · · ntr

r (2) · · · −ntr
r (2) · · ·

...
...

...



←(l)
←(l +1)

(13)

b =




...
T̂ xi, j

T̂ yi, j
...



←(k)
←(k+1) d =




...
d∆
d∆
...



←(l)
←(l +1) (14)

where equation 13 gives a part of matrixC related to the first constraint. From the form of
equations 7 - 9 it is obvious that other two constraints can be expressed in a similar way.
Equations 10 and 11 present a problem of the constraint linear least squares optimisation



which searches for the minimum ofE (p) defined by equation 10 with the constraints
imposed on vectorp by equation 11. To solve this problem, the quadratic programming
active set method [9] was used.

5 Simulation Results

To investigate the performance of the proposed method, a series of tests were performed
for different configurations of scanning paths. The simulation results shown in this section
were obtained for the scanning path configuration shown in Figure 2. The image positions
in each scanning path were generated randomly. From these image positions, the exact
local translations are computed for all the overlapping images. The simulation of the
local translations estimated based on image similarity,T̂i, j , is done by adding random
errors to the exact local translations. The error distribution is uniform over the interval
of ±1 pixel for the transversal components (with respect to the scanning path) and±2
pixels for the longitudinal components. Based on the simulated local translationsT̂i, j , the
initial positions of the images in the mosaic were computed based on the sequence of
the images in each scanning path and one image pair randomly selected from different
scanning paths. Since there are two scanning paths (No. 7 and 8) to fix the relative
position between other scanning paths, only the first two constraints were applied. To
evaluate the effectiveness of the imposed constraints, histograms of(C ·p−d) computed
for image positions before and after error equalisation are shown in Figure 5. While the
left histogram for the initial image positions shows that the conditions 7 and 8 are far from
being fulfilled, the right histogram for the image positions after error equalization shows
that all the conditions are satisfied.
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Figure 5: Histogram of(C ·p−d) for initial image positions (left) and image positions
after error equalisation (right)

Figure 6 shows the histograms of the errors computed between the ideal local transla-
tions and the local translations computed respectively from the initial image positions and
the image positions after error equalisation. As shown in Figure 6, the errors for the initial
image positions (7 pixels maximum due to the image inconsistency problem described in
Section 2 ) are significantly reduced by the proposed error equalisation method to below
the level of the modelled local translation estimation error (1.8 pixels maximum).
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Figure 6: Histogram of local translation errors for initial image positions (left) and image
positions after error equalisation (right)

6 Mosaic Construction for X-Ray Images

The described mosaic construction method has been applied to merge a large number of
X-ray images obtained using a robotic inspection system into a single image represent-
ing the component under inspection. Figure 7 shows the mosaic constructed from 217
X-ray images using image positions obtained directly from the acquisition system, these
positions exhibit random errors with maximum errors as big as 12 pixels. Although align-
ment of the global structures is relatively good, there is significant misalignment between
overlapping images.

Figure 7: Mosaic constructed directly from the image positions obtained from the X-ray
acquisition system

The mosaic built based on the local translations estimated from the image content
is shown in Figure 8. All the local translations were estimated iteratively in a multi-
resolution coarse-to-fine fashion with the cross-correlation coefficient used as the cost
function. The image positions were found using a sequence of local translations along
each scanning path from top to bottom. The relative positions between different scanning
paths were established based on the local translations estimated using image similarity



between images at the top of each scanning path. In contrast to the mosaic in Figure 7,
the images in Figure 8 are well aligned locally, but due to accumulation of the errors along
each scanning path there are significant misalignments for global features (arc structures).

Figure 8: Mosaic constructed based on the estimated local translations without any error
equalisation

Figure 9 shows the result of the proposed error equalisation method with all three
constraints 7 - 9 implemented. The estimated local translations were exactly the same
as those used in the mosaic of Figure 8. The scanning paths and constraints’ directions
were calculated from the positions obtained from the X-ray acquisition system. Those
are exactly the same positions from which the mosaic in Figure 7 was constructed. Four
constraints of the form given by equation 9 were used; one at the bottom, one at the top,
and two equally spaced across the middle part of the mosaic. From the presented result
it can be seen that not only are the images well aligned locally (with sub-pixel accuracy)
but also, thanks to the proposed methods, the global structures represented in different
scanning paths are fully aligned.

Figure 9: Mosaic constructed by error equalisations with all three constraints imple-
mented



7 Conclusions

The paper presents a new method for automatic sparse mosaic construction with local
translation error equalisation. Compared with the mosaic built directly using local trans-
lations estimated from image contents, the proposed method is shown to achieve a lower
average misalignment error. Due to the high reliability and adequate precision ensured
by this method, it is suitable for unsupervised mosaic construction of a large number of
sparsely distributed images.
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