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Abstract

Statistical models of shape and appearance are powerful tools for interpret-
ing medical and other images. However there can remain problems with
under-trained models being too constrained. We have combined a global
model with a sequence of partially overlapping sub-models, in a manner that
exploits all the statistical information, whilst mitigating the under-training
problem. Instead of applying one global model, we use a global model to ap-
ply iteratively-updated soft constraints on a sequence of sub-models. These
sub-models may also partially overlap, and thus previously fit sub-models
can also impose soft constraints on the next iteration. The algorithm has
been applied to dual x-ray absorptiometry scans of the spine in order to au-
tomate vertebral morphometry measurements, using overlapping triplets of
vertebrae as the sub-models, together with a global model of the entire spine.
Combining a global model in this way with a sequence of sub-models gives
substantially better results than using the former alone.

1 Introduction

1.1 Statistical models in medical imaging

Many problems in medical image interpretation require an automated system to interpret
images. These images may provide noisy and possibly incomplete data, and typically
deal with complex and variable structure. Model based methods offer solutions to these
difficulties [13]. The great advantage of statistical shape models over more general de-
formable templates is that by applying simple constraints on the parameters, the generated
shape always remains within physically reasonable bounds. This tends to lead to greater
robustness in the presence of image noise. Furthermore by using a global shape model,
correlations between different parts of the shape are implicitly modelled; thus even if por-
tions of the shape are obscured by noise, their approximate location and shape can be
inferred from other parts. In noisy images the use of every available shape constraint is
helpful in improving robustness and accuracy [8].
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Although the use of a global model provides helpful constraints that avoid unphysical
solutions, there still remains the problem that as the model is based on a finite training set,
it will fail to adequately fit unseen objects which deviate too far from the training set. Our
approach steers a middle course between excessive local freedom lacking robustness in
noisy/incomplete images, and training set inadequacies over-constraining a global statis-
tical model. The approach decomposes the overall structure into a set of sub-parts, each
of which has its own statistical model; but these partially overlap and thus constrain each
other. The sub-models are fit in some sequence, which would normally correspond to
their natural physical ordering. Furthermore an overall global model is also still used, to
apply iteratively-updated soft constraints on the sequence of sub-models. Because these
constraints are applied in the form of weights on a combined point and residual grey level
fit, they are relatively ”soft”, and thus provide information without absolutely limiting
the shapes that can be derived. Thus the totality of statistical information in the global
model is used, but the coupling of the sub-models is less restrictive than if only a global
model were used; hence training set inadequacies are mitigated. We have applied this ap-
proach to automated vertebral morphometry, which is clinically important in diagnosing
osteoporosis.

1.2 Clinical background to vertebral morphometry

Osteoporosis is a progressive skeletal disease characterized by a reduction in bone mass,
resulting in an increased risk of fractures, most commonly of the hip, vertebrae, and wrist.
Of these hip fractures are the most serious, in terms of both morbidity and mortality [10].
Vertebral fractures are more common, and occur in younger patients. Several studies
have demonstrated that the presence of vertebral fractures significantly increased the risk
of further vertebral and non-vertebral fractures [2, 5]. The accurate identification of
prevalent vertebral fractures is therefore important.

Vertebrae are box-like structures which form the spine, supporting the body’s weight
whilst allowing flexibility (see for example Figure 1). A vertebral fracture occurs when
the inner structure of the vertebral body (made from spongy trabecular bone) has been
weakened. A normal vertebra has an approximately rectangular appearance in lateral
view, whereas a fractured vertebra tends to deform either by one of its ends collapsing (eg
thus forming a wedge shape), or by appearing crushed in comparison to its neighbours.

Traditionally vertebral fractures had been detected on lateral spinal radiographs by a
radiologist, who decided subjectively if any of the patient’s vertebrae appeared fractured.
There are a variety of methods, both quantitative and semi-quantitative for classifying
vertebrae as normal or with various degrees and kinds of fractures [1, 4, 3]. Commonly
used methods involve marking 6 points on each vertebra (essentially the 4 corners and
two points in the middle of the top and bottom edges). From these points a posterior,
a middle and an anterior height are derived along with their ratios. It is now common
practice to use dual-energy absorptiometry (DXA) scans, or single-energy absorptiometry
(SXA) scans for assessing vertebrae. These scans use a very low X-ray dose compared
to conventional radiography, and also have the advantage of using a parallel beam to
eliminate the projection effect of conventional radiography [7]. Commonly used scanners
also provide software to calculate heights and ratios once the points have been marked on
the digitised image, via a linked PC workstation.

Nevertheless the time involved in marking up scans remains significant, and further-



Figure 1: Example DXA Scan of normal spine

more using only 6 points may not give a complete enough description to reliably classify
the early onset of osteoporosis, where fractures may be marginal and involve subtle shape
changes. Smyth et al [9] have already demonstrated that an Active Shape Model (ASM,
see below) can be used to accurately and precisely automate the measurement of normal
vertebrae. The ASM covered the lumbar spine, and the thoracic spine from vertebra T12
up to T7 (see Figure 1). The vertebrae above T7 were not modelled, as the vertebrae of
the upper thorax are frequently not well imaged in DXA scans [7]. Figure 1 shows a
typical DXA image on the left with the superimposed model solution on the right.

2 Active Appearance and Active Shape Models

An Active Appearance Model (AAM) [13, 14] is a statistical model that describes both
the shape of an object and the image texture around the shape. An AAM is created by
training it with sample images on which the boundaries of the object and other important
edges have been annotated. The AAM is an extension of an Active Shape Model (ASM)
[13, 11]. In an ASM object shape is described by a point distribution model (PDM) which
is generated by statistical analysis of the variation in landmark point coordinates in the an-
notated images. Firstly the training contours are aligned as closely as possible by means
of scaling, rotation and translation. Then principal component analysis is performed on
the residual deviations. Any new shape from the object’s distribution can be linearly mod-
elled as the sum of the mean shape plus a weighted combination of the most significant
principal components.



An AAM [13, 14] typically uses a complete model of grey level texture, in which
correlation between texture in different places is modelled. A PCA based model of the
grey-level texture in the image around the shape is derived. The texture model PCA
weights are combined with the shape model weights into a composite vector, and a further
stage of PCA is conducted, to include correlations between shape and texture. The image
search problem then becomes one of finding optimal parameter weights for the AAM
principal components to best match the image. The AAM algorithm uses a fast linear
update scheme to search, which is also learnt from the training set. Full details are given
in [13, 14].

Smyth et al [9] located vertebrae using an ASM. We, however, use an AAM in this
study. There are several reasons for this. Firstly the AAM uses a more complete model
of the image grey level structure, and also models the covariance of that structure. It
thus contains more information, and one would therefore expect that this would lead to
more robust performance. Secondly Cootes has shown how to combine prior estimates of
shape points with the AAM to perform Constrained AAM search [12], and the feeding
forward of constraints is essential to our approach. Thirdly Scott et al have recently shown
[6] that AAM reliability can be improved by using texture pre-processors, that apply the
AAM approach to tuples of feature detector outputs, rather than raw pixel intensites.
One of these detectors is a corner detector, which is of particular interest in vertebral
morphometry, as it is the corner points that provide 4 of the 6 manually marked points.
However this study only examines standard (pixel intensity) AAMs.

3 Methods

3.1 Vertebral Triplet Modelling

Smyth et al [9] showed that good performance could be obtained with an ASM using
“miss-one-out” tests on normal vertebrae. Nevertheless if the aim were to automatically
classify vertebrae as fractured or normal, the considerably greater range of variability
in fractured vertebrae would pose a problem for the model. Not only can individual
fractured vertebrae vary in a much wider manner than normal ones, but there may well be
combinations of different fractured vertebrae not present in any one image in the training
set. Thus the global model is likely to be over-constrained. We obtained the dataset
of Smyth et al [9], and used it to build both a global model of the whole spine, and
overlapping triplets of vertebrae. We applied our algorithm to these triplets. The vertebral
triplet is a good compromise between the two extremes of individual vertebrae and the
entire spine. Each vertebra (except the bottom and top, L4 and T7) is fitted using the sub-
model in which it is central, and the two neighbouring vertebrae provide constraints and
additional shape and texture information which assist the fit. L4 and T7 vertebrae are just
fit as part of the triplet centred on their neighbours. It is intended to apply the approach to
include also fractured vertebrae once a suitable dataset has been obtained, as this approach
allows for fracture combinations that were not present in any one image in the training set.
Although potential training set inadequacies might remain at the individual vertebra level,
problems due to unseen fracture combinations should be mitigated. The dataset consisted
of 78 lateral spine DXA images in women (mean age 61 years, age range 44-80), obtained
from a Hologic QDR2000plus scanner. The dimensions of each pixel of the scan were
0.9 x 1.0 mm.



3.2 Algorithm

The sub-model sequence fit algorithm has been coded in a general framework described
next, and in principle can be applied to any linked sequence of sub-models where there
is some natural ordering of the shape sub-parts. It is assumed that there is typically some
overlap between each sub-part, and thus the previous stage partly determines the starting
solution for each sub-part’s image fit. An initialisation of the global model (i.e. the entire
shape) from a few user-defined landmarks provides further information for the sub-model
starting solutions. At each sub-model fit iteration the current solution is projected (see
next paragraph) from the global model into the sub-model, and then the sub-model fit
is projected back into the global model. Each sub-model fit uses a constrained fit of an
AAM (see [12]). Constraint weights are also adjusted as the search proceeds along the
chain of sub-models, with higher constraint weights applied to points that have already
been determined by a previous sub-model when fitting the next stage sub-model.

The projection between the global solution and each sub-model and back consists of
the following. The current points and constraint weights are maintained in global vectors.
However each sub-model in effect has its own local copy of only the subset of points and
weights which it models. The specific application supplies to the algorithm the mapping
between the global vector indices, and the sub-model indices. This mapping is actually
maintained in 3 sub-maps corresponding to: the central portion of the sub-model’s shape
which it is primarily responsible for determining; the overlapping sub-portion determined
by the previous iteration; and the overlapping sub-portion which will be finally deter-
mined by the next sub-model. In the vertebral application these 3 sub-portions simply
correspond to individual vertebrae. For example when fitting the L3/L2/L1 triplet, this it-
eration determines the points of L2; using significantly weighted constraints applied to the
points projected in from L3 (previous portion); and it additionally feeds forwards updated
points and weights for L1 (next portion). All values are projected in, but the weights will
be high for L3 (because of the previous iteration); moderate for L2; and low for L1. After
the sub-model fit is complete only the points for L2 and L1 are projected back out into the
global vectors; the weights for L2 are increased to high; and the weights for L1 increased
to moderate. The latter L1 weights will in turn become high at the next iteration, when
L1 is the central portion of the next sub-model.

In general a model may well be initialised by the user manually setting a small number
of landmarks, e.g. by clicking with a mouse. For example in the vertebral morphometry
application, the user initialises the search by clicking on 3 points corresponding to the
mid-points of the bottom of L4, top of T12 and top of T7. This follows earlier work by
Smyth et al [9]. The algorithm as such then proceeds as follows.

1. Fit the global shape model to the user input (or otherwise defaulted) landmarks as
a starting solution. Note that this does not search the image. Initialise low weights
on the predicted points (any higher weights on those landmark points input by the
user are retained).

2. For each sub-model in the required processing order loop:1

1There are no particular rules on the ordering, which is implicitly supplied to the algorithm via the ordering
of the map container holding the sub-models. The ordering used is a matter of specific-application strategy,
but should be consistent with the previous/next projection sub-maps. The software also allows a reverse mode
which swaps the meaning of previous and next in a sub-model’s projection sub-maps.



(a) Project points and weights into the sub-model from the global vectors,
including normally an overlap portion from a previous sub-model.

(b) Initialise a sub-model solution by performing a weighted least squares fit of
the shape model to these projected point positions.

(c) Perform a weighted constrained AAM fit of this sub-model to the image.

(d) Project back the updated points into the global vectors. Note that the updated
points comprise the central portion of the sub-model, and the next sub-model
overlap.2 However the subset of points primarily determined at the prior
stage are not projected back again.3

(e) Increase the global weights for the central portion to high, and those of the
next overlap portion to moderate.

(f) Re-perform a weighted least squares fit of the global shape model to the
global points vector, thus making the globally modelled shape as consistent
as possible with the sub-model solutions so far. Copy out from the global
model any as yet unfitted (by a sub-model) points into the global points
vector. This step thus adjusts some of the initial points of the next sub-model
for the next iteration. Thus maximal feed-forward of information is
maintained.

3. End loop

Although our specific application used triplets of vertebrae, the algorithm really deals
with a generalised “triplet”, whose three sub-parts are defined purely by the domains of
the 3 projection sub-maps for: points previously determined; points to be determined
now; and further overlap points to be fed forward as a soft constraint.

3.3 Experiments

The 78 images were split into 3 groups of 26. “Leave-one-group-out” experiments were
then performed (i.e. 52 training images and 26 test images, repeated thrice). On each
experiment the 3-point user initialisation was emulated by using the known equivalent
marked points and adding random offsets to them. These were zero-mean Gaussian errors
with SD of 1 pixel in the y-direction (along the spine) and 3 pixels in the x-direction. The
figure of 1 pixel in y corresponds to other published manual precision figures of around
1mm [9, 7]. As the mid-points are used for initialisation, and there is a greater degree
of arbitrariness in the lateral position of this than for corners, an SD of around 3 times as
much in lateral precision seemed reasonable. Previous work by Smyth et al [9, 8] has in
any case demonstrated high precision for ASMs, so it is not expected that the exact form
of initial randomisation will have much effect.

2Additional checks are made to ensure that overlap soft constraint points are fed forward at most once, and
in particular these can never overwrite the assignments from a prior iteration in which these points are in the
central “to be determined now” subset.

3But in the special case of the first iteration any points defined as prior are in fact copied out.



Single Model Sub-Model Sequence
Vertebra Mean SD %ge Mean SD %ge

ID Acc Acc Failure Acc Acc Failure
T7 1.53 1.08 22.10 0.97 0.65 1.23
T8 1.50 0.90 12.31 0.90 0.52 0.00
T9 1.37 0.70 4.94 0.86 0.57 1.19
T10 1.13 0.71 6.14 0.73 0.31 4.85
T11 1.08 0.73 8.61 0.78 0.27 4.85
T12 1.33 0.83 9.79 0.93 0.31 6.09
L1 1.33 0.68 8.64 0.92 0.46 7.32
L2 1.18 0.52 8.65 0.82 0.24 8.56
L3 1.22 0.62 9.88 0.89 0.51 2.47
L4 1.42 0.70 13.59 1.07 0.45 3.66
Overall 1.28 0.74 9.17 0.88 0.43 4.33

Table 1: Global Model Search Error and Failure Rate (pixels, approximately equivalent
to mm)

4 Results

The accuracy and robustness of the search was characterised by calculating the mean
absolute point-to-line distance error for each vertebra. The error is the distance from each
point on the located vertebra contour to the nearest point on the “true” contour (i.e. as
annotated during training). Then the mean and SD of the errors were calculated over all
the images in which the search was successful. However if on a particular image, the
mean error for a vertebra was less than 5mm, then this was classed as a search failure (for
that vertebra). The figure of 5 mm corresponds to around 25% of a typical vertebral height
and would be likely to cause mis-classification between normal and fractured vertebrae
(a grade 1 fracture can be classed as a 20% reduction in height [4]). Table 1 compares
the results of using the single global model in a standard AAM search to the sub-model
sequence approach, whilst table 2 shows the result of using a standard AAM search on a
somewhat larger training set using a “miss-one-out” train/test cycle.

The order in which sub-models are fit will have some effect on the final solution.
We experimented with a variety of orderings, and found that the best sequence was to
start from the lowest vertebral triplet (L4/L3/L2) and proceed up the lumbar and into
the mid-thorax as far as the triplet centred on T11. However because the vertebra of
the upper thorax are frequently poorly imaged, it is better to then proceed to fit T7 and
T8, then alternate back to T10 concluding with the now heavily constrained T9. This is
because a large constraint weight is applied to the user’s initialisation point on the top
of T7. Applying this constraint, and using this user-supplied information relatively early
in the fit of the thorax, tends to increase overall reliability, and substantially improves
performance on the difficult T7 and T8. This lessens the chance that the search drifts
off into clutter from the ribs and lungs around T10/T9, which would of-course then mal-
position the starting solution for subsequent vertebrae. This point also emphasizes that
our approach can naturally lend itself to application-specific strategies for fitting the best
parts of the image first, or emphasizing user-supplied information in the fit sequence.



Vertebra Mean %ge
ID Acc Failure

T7 1.82 10.26
Rest of spine 1.21 4.23

Table 2: Global Model Search Error (pixels, approximately equivalent to mm) and Failure
Rate on miss-one-out train-test cycle for Standard AAM

5 Discussion

The performance of the sub-model sequence algorithm appears far better at T7, reducing
a poor 25% failure rate to 1.23%. Over the rest of the spine there appears to be a reduc-
tion in failures from 9.17% to 4.33%. With the current sample size this is not actually
statistically significant, although the fact that the sub-model approach performs better on
every single vertebra offers some further support that the apparent improvement is real.
The mean point-to-line distance error is reduced on average from 1.28 to 0.88, (excluding
T7 because of its high failure rate with the global model). The reduction of 0.4mm is
significant assuming the non-T7 data can be pooled, and corresponds to over 4 standard
errors. The variance of the accuracy is also significantly lower for the sub-model sequence
approach.

Table 2 shows that the accuracy attained with a single global model using a somewhat
larger (77 image) training set is not significantly better than in the former case of a 52
image training set. The search failure appears to be less on a maximally trained model,
but again the difference is not statistically significant, except at T7 which is marginally so
(at the 5% level assuming Binomial convergence to Gaussian has been attained). However
the results at least suggest that the smaller training set might be causing some additional
failures. These miss-one-out results for a standard AAM can be compared to results
published by Smyth for an ASM applied to the same dataset [8]. On the whole the simpler
ASM appeared to perform better on this data than a standard AAM, especially at T7. The
comparable results for the ASM were a mean error of 1.39 pixels at T7 and 1.04 pixels
over the rest of the spine. There are no variance figures published for the ASM results so it
is not possible to assess the statistical significance of the difference. Cootes et al [13, 15]
concluded that although an AAM may be more robust than an ASM, nevertheless an ASM
tends to have a larger capture range if started from a poorly initialised solution. This is
because an ASM searches around the current location, whereas the AAM only examines
the image directly under its current area. Our results may be indicating this also, but our
new algorithm still gives better results than the ASM.

Figure 2 shows an example of an image where the spine is more curved than is typical
in the training set, and which also contains a vertebra on the margins of a grade 1 wedge
deformity (L1). The overall global model is too constrained to fit to this image, and the
solution can be seen to be poor. However the sub-model sequence, by exploiting the
looser coupling of the sub-models, and their independent pose, still provides a good fit.

In conclusion, the results show that combining a global model in this way with a
sequence of sub-models gives better results than using the former alone. We have gen-
eralised from the idea of a triplet of vertebrae to the general threesome of: previously
determined points; points to be determined now; and further overlapping points to be fed



Figure 2: Example of global model fit failure (left) and sub-model fit success (right)

forward as soft constraints. We believe that the combination of this conceptual triplet
with the use of further (iteratively updated) soft-constraints from a global model, pro-
vides a powerful framework for exploiting all the information in statistical shape models,
whilst mitigating fit-problems due to under-training of the model. The framework also
naturally lends itself to semi-automatic fitting, where a user can manually adjust part of
the fit in noisy or atypical regions. Then large weights can be attached to the user-adjusted
point(s), and the primarily affected sub-models only need be refit. It is intended to con-
tinue with this approach in the vertebral morphometry application by including fractured
vertebrae, which have a much greater range of variability than normal vertebrae. There is
also scope for applying this approach to conventional radiological scans, where X-ray fan
beam distortion means that there is a variable dimensional scaling across the image. As
the sub-models are allowed to have independent pose, the variable scale could be incor-
porated.
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