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Abstract

Summarising video data is essential to enable content-based video indexing
and retrieval. A novel graph theoretic approach is presented to extract repre-
sentative key frames corresponding to the shortest path of the graph for each
shot. We distinguish further amongst paths of similar weight by examin-
ing the standard deviation of their constituent edge weights which improves
the distribution of the selected key frames. The perceived camera motions
contained within each shot are also annotated to introduce a further level of
indexing and searching video content.

1 Introduction

There is currently a distinct lack of efficient authoring and querying tools inhibiting full
exploitation of online and archived video data. Manually indexing the wealth of such
video content is currently the most accurate method, but it is a very laborious and time
consuming process. To enable users efficient access it is necessary to develop tools that
facilitate searching based on non-sequential browsing and visual content-based indexing.

A predominant approach to this problem is to use a video abstract for indexing and re-
trieval. A video abstract is defined as a short sequence of images, extracted from a longer
video whilst still preserving the essential message [8]. The difficulty in composing such
an abstract is determining which frames best represent the video contents. A common ap-
proach is to segment a sequence into shots and then select a single key frame to represent
each shot. This is often referred to as a filmstrip [2]. However, this is not always sufficient
as a shot can potentially contain camera motions that could drastically change its content.

In this paper, we propose an algorithm to generate a video index which assumes that
a video sequence has already been segmented into individual shots using the edit effect
detection algorithm outlined in [9]. Then, estimates of the dominant motion between each
frame pair are used to decide when there has been sufficient camera motion to require
another key frame. A weighted directed graph is formed for each shot where the frames
corresponding to the vertices forming the shortest path through the graph are used as
representative key frames for each shot. Thus, a small subset of frames can be used to
retrieve information from the video and enable content-based video browsing. We also
extend this algorithm to characterise and textually annotate the perceived camera motion
using a rule-based approach to augment the indexing and searching process.
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2 Key Frame Extraction

Different approaches to video summarisation often depend on the context of the appli-
cation. Lienhart et al. [8] concentrate on the generation of trailers for movies resulting
in abstracts that are short and designed to attract the attention of the viewer without re-
vealing too much of the story line. In contrast, an abstract for a documentary or a digital
video library should capture all the video content. Two approaches to this are filmstrips,
as mentioned earlier, and skims [2] which incorporate both video and audio information
and are played rather than viewed statically. Whereas many of the approaches to video
summarisation rely on the explicit detection of shot changes [1, 7], other techniques have
been proposed without. Commonly images are transformed into a lower dimensional
space, e.g. using PCA [6], and then grouped using a clustering algorithm [6] or curve
simplification [4]. The frame closest to each cluster centroid is chosen as a key frame.

In order to be an efficient index, a set of key frames should represent all the video
content (e.g. objects and background) and describe the order of events (e.g. camera
motions) whilst minimising redundancy. We propose an approach to summarise a video
that assumes the sequence has been temporally segmented into shots using the edit effect
detection algorithm outlined in [9] which uses block matching motion compensation to
generate an inter-frame difference metric. For each block in frame f (n− 1), the best
match in a neighbourhood around the corresponding block in frame f (n) is sought. This
is achieved by calculating the normalised correlation between blocks in the frequency
domain and locating the maximum correlation coefficient, the value of which is used as
a goodness-of-fit measure for each block. The estimated motion vectors are then used to
track the blocks over time. In the present work, we use these motion vectors to estimate
the dominant motion between frame pairs. Assuming the dominant motion was caused by
camera motion, these estimates can then be used to identify shots containing significant
camera motion that may require more than one key frame to represent their content.

Camera motions can be grouped into two broad classes: (i) tripod motion and (ii) free
motion. If a camera is fixed to a tripod it can only exhibit three types of motion; pan,
tilt and zoom. If there is free motion of the camera it can additionally track, boom or
dolly. The effect of a pan on the change of contents in a shot and the perceived image
motion is very similar to that of a track. For example, if a camera pans or tracks right,
the background and objects appear to move to the left and gradually leave the shot while
new background and objects may appear on the right. Such similarities can also be drawn
between “tilt and boom” and “zoom and dolly”. For this reason, we use a simple motion
model which only represents the scale and translation in x and y between two frames. The
point pi = (x,y) in frame f (n−1) is transformed to the point p′i = (x′,y′) in frame f (n),
with respect to a reference point (xr,yr) according to

(
x′
y′

)
=

(
sθ n(x− xr)+ xθ n
sθ n(y− yr)+ yθ n

)
. (1)

In practice, the frame centre is taken as the reference point. The parameter vector�θn =
(sθ n,

xθ n,
yθ n) corresponds to the scale, translation in x and translation in y respectively,

between the frames f (n− 1) and f (n). The model parameters are estimated using the
robust estimator MSAC [10] which provides good estimates in the presence of outliers.
Outliers could possibly be present in the data where the motion equation is invalidated or
where points correspond to secondary motions.



2.1 Minimising Similarity between Key Frames

To portray all of the video content, we must determine when there has been sufficient
scene change due to camera motion to warrant more than one key frame to represent a
shot. We formulate this as a shortest path problem. Given a directed weighted graph, the
shortest path between two vertices is the path of minimum total weight. To minimise rep-
resentational redundancy we need to minimise the similarity between key frames. There-
fore, a graph is formed where vertices correspond to frames in the shot and edge weights
are a measure of similarity between two frames. The frames corresponding to vertices
forming the shortest path through the graph are then used as representative key frames for
each shot.

We define the similarity metric ψ(i, j) as the amount of overlap between the contents
of frames f (i) and f ( j) where 0 ≤ ψ(i, j) ≤ 1, based on the assumption that the content
is only significantly changed by camera motion. If there has been no camera motion
between the frame pair, then they will contain the same content and ψ(i, j) = 1. As the
amount of camera motion increases the amount of overlap will decrease until the contents
of each frame are disparate and ψ(i, j) = 0. For each shot we have an estimate of the
motion parameter vector �θn for each consecutive frame pair f (n− 1) and f (n). Given
any two frames f (i) and f ( j) where i < j, we accumulate the motion parameters between
them to obtain�∆i j = (s∆i j,

x∆i j,
y∆i j) where

s∆i j =
j

∏
n=i+1

sθ n,
x∆i j = xθ j + sθ j · x∆i( j−1),

y∆i j = yθ j + sθ j · y∆i( j−1) (2)

and x∆i( j−1) = y∆i( j−1) = 0 when i = j−1. Hence, s∆i j, x∆i j and y∆i j are the total amount
of scale, translation in x and translation in y respectively, between f (i) and f ( j). This
accumulated motion parameter vector is then used to compute the amount of overlap
between the contents of the two frames. There are two cases to be considered depending
on the scale parameter s∆i j: (i) s∆i j ≤ 1 and (ii) s∆i j > 1.
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Figure 1: Computing the similarity metric between frames f (i) and f ( j). Two cases:
(left) s∆i j ≤ 1, (right) s∆i j > 1 (see text for details).

In each case, assume any frame f (i) has constant width w, height h and area A = w ·h
with the position (0,0) at its centre. We apply the motion transformation �∆i j to frame
f (i) to obtain a sub-frame zi j with a new width wzi j = w · s∆i j, height hzi j = h · s∆i j, area
Azi j = wzi j · hzi j and its centre at the position (x∆i j,

y∆i j). The sub-frame conveys the
size and position of the contents of frame f (i) relative to frame f ( j). In other words,
computing the amount of physical overlap between f (i) and the sub-frame zi j, defined by
φ(i, j), is equivalent to computing the amount of overlap between the contents of frame



f (i) and frame f ( j). If s∆i j ≤ 1, there has either been no scaling or a scale down plus
possibly translation in x and y. In this case, we must compute what proportion of f ( j) is
taken up by the contents of f (i) hence, ψ(i, j) = φ(i, j)/A, as illustrated in Figure 1(left).
In case (ii) when s∆i j > 1, there has been a scale up plus possibly translation in x and
y so we must compute what proportion of the contents of f (i) are still in f ( j), thus
ψ(i, j) = φ(i, j)/Azi j as shown in Figure 1(right).

2.2 Graph-based Shot Representation

We now use the similarity metric ψ(i, j) described above to represent each individual
shot as a graph. Let us define a graph G = {V,E} comprised of a set V of N vertices,
{v1, ...,vN}, and a set E ⊆V ×V of directed weighted edges connecting vertices in V . In
a directed graph, each edge also has a direction, so edges (vi,v j) and (v j,vi), where i �= j,
are distinct. The weight of an edge connecting vertices vi and v j is defined by ω(vi,v j). A
path from vi to vm is a set of connected edges {(vi,v j),(v j,vk), ...,(vl ,vm)} from E. The
weight of path p = 〈v0,v1, ...,vk〉 is the sum of the weights of its constituent edges:

Ω(p) =
k

∑
i=1

ω(vi−1,vi). (3)

If one or more paths exist from v0 to vk the shortest path is defined as the path p with the
minimum total weight, min{Ω(p)} [3].

The connectivity of a graph can be represented as an adjacency matrix M in which
each element (i, j) represents the edge between vertices vi and v j. If there exists an edge
(vi,v j) then Mi j =ω(vi,v j) otherwise Mi j = 0. Our goal is to form an adjacency matrix for
each shot where vertices correspond to individual frames and ω(vi,v j) = ψ(i, j). Hence,
the shortest path from the first to the last frame will minimise the amount of overlap
between the contents of the representative key frames. If there is no overlap between
two frames f (i) and f ( j) then by definition, Mi j = ψ(i, j) = 0. This implies that the
key frames corresponding to the vertices in the shortest path must always have some
overlap of their contents. In fact, we define a threshold Tmin to specify the minimum
amount of overlap there must be between key frames. Thus an edge (vi,v j) only exists if
ψ(i, j)≥ Tmin. Additionally, to preserve temporal coherence in the video index, a directed
edge (vi,v j) can only exist if f ( j) succeeds f (i) in the video sequence.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

(38,74) = 0.439ω

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

ω(0,38) = 0.432

Figure 2: Adjacency matrix repre-
senting a panning shot at Tmin = 0.2.

Figure 2 shows a visualisation of the adja-
cency matrix representing a shot where the cam-
era pans continuously to the right with Tmin = 0.2.
The shortest path from the first to the final ver-
tex is p = 〈0,38,74〉, with the corresponding key
frames shown in Figure 3(left). The weight of
the shortest path edges are ω(0,38) = 0.432 and
ω(38,74) = 0.439 and the total weight is Ω(p) =
0.871. For comparison, the frames representing
the second shortest path p′ = 〈0,29,55,74〉 are
shown in Figure 3(right) with Ω(p′) = 1.850. It
can be seen that applying the shortest path algo-
rithm results in less representational redundancy.
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Figure 3: (left) shortest path representation, (right) next shortest path (has redundancy).
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Figure 4: Adjacency matrices for a shot with significant camera motion: (left) any edge
exists if ω(vi,vk) ≥ Tmin, (right) an edge only exists if ω(vi,vk) ≥ Tmin,∀ i < k < j.

Figure 4(left) shows the adjacency matrix representing a shot of 289 frames where the
camera pans to the right followed by a pan left returning just past the origin. It can be
seen where the latter frames start to overlap again with those earlier in the sequence. The
shortest path in this graph is p = 〈0,288〉 and Ω(p) = 0.564. To be an efficient index into
a video, the key frames must depict all of the content and convey the temporal order of
events in the shot i.e. the camera motion. The key frames here (i.e. 0 and 288) can be
seen in Figure 5. In this example, the two selected key frames would not represent any of
the video content when the camera pans to the right. We therefore add a final constraint
to forming an adjacency matrix. In addition to the earlier condition that an edge only
exists if ω(vi,v j) ≥ Tmin, the edge (vi,v j) only exists if ω(vi,vk) ≥ Tmin for all i ≤ k ≤ j.
Figure 4(right) shows the adjacency matrix representing this shot after this constraint has
been added and the shortest path is now p = 〈0,49,100,214,245,288〉 with Ω(p) = 1.363
which represent all of the shot content, as shown in Figure 5.

In summary, we form an adjacency matrix for each shot where the vertices represent
each frame of the sequence and ω(vi,v j) = ψ(i, j). Table 1 outlines the conditions for
which a directed edge (vi,v j) exists.

Condition 1 j > i
Condition 2 ω(vi,v j) ≥ Tmin

Condition 3 ω(vi,vk) ≥ Tmin for all i < k < j

Table 1: Conditions for which a directed edge (vi,v j) exists.

2.3 Finding the Shortest Path

To find the shortest path from a starting to a final vertex, we use the A∗ search algorithm
which guarantees the shortest path, provided a possible path exists. Central to the A∗
algorithm is the use of an evaluation function for ordering the vertices in the search space:
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Figure 5: Shortest path key frames for the adjacency matrix in Figure 4(right). The 2
underlined frames denote the shortest path for the adjacency matrix in Figure 4(left).

e(vi) = g(vi)+h(vi) (4)

where g(vi) is the actual cost of reaching vi from the starting vertex and h(vi) is a
heuristic estimate of reaching the final vertex from vertex vi which must always be an un-
derestimate of the actual cost. It can be shown that an optimistic heuristic h always results
in an optimal solution. In our algorithm, h(vi) is the minimum weight of all existing edges
from vi. Hence, the actual cost from vi to reach the final vertex will always be greater than
or equal to this estimate.

There may exist more than one shortest path in a graph, with the algorithm returning
the first shortest path it finds. Given two possible shortest paths p and p′ with Ω(p) =
Ω(p′), ideally the one with the smallest spread of edge weights should be chosen, i.e. the
path corresponding to the most evenly distributed key frames. Hence, we compute the
standard deviation σ of the constituent edge weights on each path and select the path with
the smallest σ . In practice, given a shortest path p there rarely exists another path p′ with
Ω(p) =Ω(p′) because of floating point resolution. Even so, there may exist another path
p′ with Ω(p′) ≈ Ω(p) and σ(p′) < σ(p) that would be preferred as the shortest path if
| Ω(p)−Ω(p′) |≤ ε and ε is small. However, comparing every possible path with the
shortest path is not feasible since the search space is too large. Thus, we need to bias the
search for the shortest path towards a path with a small σ of its constituent edge weights.
Given a path p with Ω(p) and σ(p), we define a new weight for p by

ϒ(p) = Ω(p)+δ ·σ(p) (5)

where δ is a weighting. We now choose p if ϒ(p) ≤ ϒ(p′), otherwise we select path
p′. In practice, in our algorithm, δ = 1 because the standard deviations are small. Using
the A∗ algorithm, the vertices are ordered in the search space using e(vi). If there are
several vertices for which e(vi) are approximately equal, we want the search to favour the
path through the vertex where the standard deviation of the edge weights is the smallest.
Therefore, we define a new heuristic

d(vi) = e(vi)+δ ·σ(e(vi)) (6)

to order the vertices in the search space. Given several possible paths of approximately
equal length the search algorithm is biased towards finding the path with the smallest
spread of edge weights. Figures 6(a) and 6(b) show comparative key frames representing
the shortest paths found using the heuristics defined in (4) and (6) for the same panning
shot. It can be seen that, at the cost of a slightly longer path, the latter key frames are
more evenly distributed through the shot.
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(a) Key frames representing the shortest path p with
Ω(p) = 1.000 and σ(p) = 0.288

155 2950
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(b) Key frames representing the path p′ with
Ω(p′) = 1.005 and σ(p′) = 0.0025

Figure 6: Two paths with approximately the same weight: the one with the smallest spread
of its constituent edge weights is selected.

So far, we have used the frames corresponding to the vertices in the shortest path to
represent the video. It follows that we will always have a minimum of two key frames
to represent each shot. However, when there is little or no camera motion a single key
frame could potentially be sufficient. We introduce a second threshold Tmax which defines
the maximum amount of overlap between two key frames. If there are more than two
vertices in the shortest path or there are only two vertices with Ω(p) < Tmax, then the path
accurately summarises the video. However, if there are only two vertices vi, v j in p and
Ω(p)≥ Tmax, we select the single vertex that best represents the edge (vi,v j), i.e. we select
the frame corresponding to the vertex vk with the most overlap with all the other frames
between and including frames f (i) and f ( j). That is the vertex vk with the maximum
sum of edge weights, maxk{∑ j

l=iω(vk,vl)} ∀ i ≤ k ≤ j. The values Tmin = 0.2 and
Tmax = 0.8 were fixed in all our experiments and to generate the example video abstract
shown in Figure 8. These parameters can be set according to user preference.

3 Motion Characterisation

The proposed video abstraction method allows us to efficiently browse and index video
through visual content. For each shot, the extracted key frames give a graphic, sequential
depiction of the narrative; analogous to a storyboard. However, as well as searching for
a shot containing a specific object or scene, a user may also wish to search for a shot
which appears to contain a particular type of camera motion, for example, a producer of a
wildlife documentary may search an archive for a “fill in” shot which must appear to pan
across a particular background (but be less concerned with how the shot was filmed i.e.
the actual motion of the camera). Although the key frames portray the camera motion, we
extend our algorithm to characterise and textually annotate the apparent camera motion
contained within each shot to facilitate this type of search.

To characterise the motion contained within each shot, we use a top-down approach
starting with a crude initial guess of the camera motion which is then recursively refined.
This results in less sensitivity in the presence of noise, such as camera jitter. The method
employed for this refinement is the Douglas-Peucker line simplification algorithm [5]. We
divide each individual shot, with motion estimates �θ1, ..., �θn, into segments where the rate
of change of the motion that appears in the image is constant. We start by classifying the
motion in the x direction and then extend the method to classify all three types of motion.

Figure 7(a) shows a dotted line in 2D which is simply the sum of xθ n against time.



It can be seen that the amount of translation in the negative direction increases, then the
camera remains stationary for a period of time followed by a translation in the positive
direction until it finally becomes constant for the remainder of the shot. In applying the DP
algorithm to characterise the motion, we start with a straight line segment between the two
endpoints of the original line as shown in Figure 7(a). This line segment is an initial rough
approximation which describes the overall motion contained within a shot. How well a
straight line approximates the original line is determined by computing the distances from
all intermediate line vertices to that straight line. We compute the Euclidean distance
between the estimated amount of motion and the actual amount of motion at time t. If
all these distances are less than a specified tolerance the approximation is good. The
endpoints are then retained and the other vertices are eliminated. However, if any of these
distances exceed the tolerance the point that is the furthest away is taken as a new vertex,
sub-dividing the original approximation into two shorter lines as shown in Figure 7(b).

This procedure is repeated recursively until all points are within the specified tolerance
and a final approximation is reached as shown in Figure 7(e). The result of the line
simplification algorithm is an approximation of the original line where the average rate of
change of the motion along each line segment is constant within a specified tolerance. We
then use the average rate of change to classify the motion as shown in Figure 7(e). We
use the term pan to characterise image translation in the x direction, tilt to characterise
image translation in the y direction and zoom to characterise image scale. Each line
segment represents a different type of motion or a similar motion but with a different rate
of change. For example, in Figure 7(e) the camera pans left over 1.5 times faster for the
first pan compared with the second. If we want to identify the changes in speed of the
apparent motion the final approximation in Figure 7(e) may be used. However, once the
motion has been characterised for each line segment we prefer to merge similar motions
together to obtain the final approximation shown in Figure 7(f).
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(e) Final Approximation using
the DP algorithm
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(f) Final Approximation after
merging similar camera motions

Figure 7: Motion characterisation using the Douglas-Peucker algorithm.

To characterise all three types of motion we must plot and simplify a line in 4D (scale,
translation in x, translation in y, time). For this, the rate of change of each motion between



each frame pair must be in the same unit of measure. To achieve this we use the amount
of area removed by each motion. Hence, given a consecutive frame pair f (n− 1) and
f (n), we redefine the motion parameter vector �θn as �βn = (sβ n,

xβ n,
yβ n) where

sβ n =
{

A(1− sθ 2
n) if sθ n ≤ 1

A(1−1/sθ 2
n) otherwise

, xβ n = h · xθ n and yβ n = w · yθ n (7)

with A, w, and h as defined earlier. We now plot the sum of �βn against time to ob-
tain a line in 4D to be simplified. Once the original line has been simplified we use
the average area removed by each motion to compute the average motion parameters,
�θavg for each line segment and use these parameters to classify the type of motion us-
ing a rule-based approach. The rules for this classification are shown in Table 2 where
Tscale = (max{w,h}−2)/max{w,h}. If more than one rule is satisfied then there has been
a combination of motions. There are different rules for classifying a pan and tilt depend-
ing on whether there exists any zoom. If there is a zoom in then it must appear to zoom in
on an object or scene not contained in the original content for there to be any pan or tilt.
Likewise, if there exists a zoom out then none or only part of the original content can be
present by the end of the zoom out for there to exist any pan or tilt. The direction of a pan
and tilt is assigned simply by examining the sign of the parameter.

Rules Motion Classification
If sθ avg ≤ Tscale Zoom out
If sθ avg ≥ 1/Tscale Zoom in
If ¬∃ zoom and | xθ avg |≥ 1 Pan
If ¬∃ zoom and | yθ avg |≥ 1 Tilt
If ∃ a zoom out and | xθ avg |≥ (w− (w · sθ avg))/2 Zoom out and Pan
If ∃ a zoom out and | yθ avg |≥ (h− (h · sθ avg))/2 Zoom out and Tilt
If ∃ a zoom in and | xθ avg |≥ ((w · sθ avg)−w)/2 Zoom in and Pan
If ∃ a zoom in and | yθ avg |≥ ((h · sθ avg)−h)/2 Zoom in and Tilt

Table 2: Rules for Motion Characterisation.

Once the motions have been characterised, the key frame extraction algorithm de-
scribed previously may be applied between motion boundaries rather than shot bound-
aries and the motions can be textually annotated. If we are more interested in searching
for a particular type of motion contained within a shot then the textual annotations can
be used to present key frames from shots containing this type of motion and nothing else.
Figure 8 shows the camera motion annotations in addition to the key frames.

4 Conclusions

We have presented a novel approach to key frame extraction by organising the similarity
of frames within a shot as a graph structure. The frames corresponding to the vertices
in the shortest path are then used to generate a content-based video index analogous to a
storyboard. This also allows us to characterise and annotate the perceived camera motion
within each shot. This facilitates a further level of indexing and searching video content.

There is no absolute measure for the quality of an abstraction. Ultimately, the effec-
tiveness of an approach can only be evaluated by users of a video library in which the
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Figure 8: Excerpt from the Pretty Woman video index - shot boundaries are also shown.

system is implemented. Here, we have shown some example video abstracts to demon-
strate our proposed method. Better subjective judgement can be made by viewing more
video shots and key frames on-line1. The abstraction of video content is a very complex
theme. In this work we have concentrated on using camera motion as one feature that
changes scene content. In future work we will also consider semantic changes in the
scene due to object motion.
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